{"title":"悬浮二氧化硅纳米颗粒的表面水化和互渗对传热的影响","authors":"Denitsa Milanova, Xuan Wu, Ranganathan Kumar","doi":"10.1201/9780429187469-7","DOIUrl":null,"url":null,"abstract":"Experimental results of silica nanofluids consisting of 10nm or 20nm silica particles have been performed. Particle size, zeta potential and the CHF values under different volume concentrations are provided, and agglomeration structures are seen to affect the critical heat flux of NiChrome wire immersed in a pool of water. The critical heat flux (CHF) of the wire does not increase monotonically with concentration. CHF decreases when particle concentration is increased depending on the particle shape and the hydroxylated surface of the nanoparticles.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Surface Hydration and Interfusion of Suspended Silica Nanoparticles on Heat Transfer\",\"authors\":\"Denitsa Milanova, Xuan Wu, Ranganathan Kumar\",\"doi\":\"10.1201/9780429187469-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental results of silica nanofluids consisting of 10nm or 20nm silica particles have been performed. Particle size, zeta potential and the CHF values under different volume concentrations are provided, and agglomeration structures are seen to affect the critical heat flux of NiChrome wire immersed in a pool of water. The critical heat flux (CHF) of the wire does not increase monotonically with concentration. CHF decreases when particle concentration is increased depending on the particle shape and the hydroxylated surface of the nanoparticles.\",\"PeriodicalId\":6429,\"journal\":{\"name\":\"2007 Cleantech Conference and Trade Show Cleantech 2007\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Cleantech Conference and Trade Show Cleantech 2007\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187469-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Cleantech Conference and Trade Show Cleantech 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187469-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Surface Hydration and Interfusion of Suspended Silica Nanoparticles on Heat Transfer
Experimental results of silica nanofluids consisting of 10nm or 20nm silica particles have been performed. Particle size, zeta potential and the CHF values under different volume concentrations are provided, and agglomeration structures are seen to affect the critical heat flux of NiChrome wire immersed in a pool of water. The critical heat flux (CHF) of the wire does not increase monotonically with concentration. CHF decreases when particle concentration is increased depending on the particle shape and the hydroxylated surface of the nanoparticles.