用符合稳定域的显式方法求解ODEs的刚性系统

A. Novikov, M. V. Rybkov, Y. Shornikov, L. Knaub
{"title":"用符合稳定域的显式方法求解ODEs的刚性系统","authors":"A. Novikov, M. V. Rybkov, Y. Shornikov, L. Knaub","doi":"10.3384/ECP17142973","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for a stiff system of ODEs is considered. The explicit m-stage first order methods of the Runge-Kutta type are designed with stability domains of intermediate numerical schemes conformed with the stability domain of the basic scheme. Inequalities for accuracy and stability control are obtained. A numerical algorithm based on the firstorder method and the five-stage fourth order Merson method is developed. The algorithm is aimed at solving large-scale systems of ODEs of moderate stiffness with low accuracy. It has been included in the library of solvers of the ISMA simulation environment. Numerical results showing growth of the efficiency are given.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Stiff Systems of ODEs by Explicit Methods with Conformed Stability Domains\",\"authors\":\"A. Novikov, M. V. Rybkov, Y. Shornikov, L. Knaub\",\"doi\":\"10.3384/ECP17142973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for a stiff system of ODEs is considered. The explicit m-stage first order methods of the Runge-Kutta type are designed with stability domains of intermediate numerical schemes conformed with the stability domain of the basic scheme. Inequalities for accuracy and stability control are obtained. A numerical algorithm based on the firstorder method and the five-stage fourth order Merson method is developed. The algorithm is aimed at solving large-scale systems of ODEs of moderate stiffness with low accuracy. It has been included in the library of solvers of the ISMA simulation environment. Numerical results showing growth of the efficiency are given.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP17142973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3384/ECP17142973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类偏微分方程刚性系统的柯西问题。设计了Runge-Kutta型的显式m阶一阶方法,中间数值格式的稳定域符合基本格式的稳定域。得到了精度控制和稳定性控制的不等式。提出了一种基于一阶法和五阶四阶Merson法的数值算法。该算法针对求解中等刚度、精度较低的大型ode系统。它已被包含在ISMA仿真环境的求解器库中。数值结果显示了效率的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Stiff Systems of ODEs by Explicit Methods with Conformed Stability Domains
The Cauchy problem for a stiff system of ODEs is considered. The explicit m-stage first order methods of the Runge-Kutta type are designed with stability domains of intermediate numerical schemes conformed with the stability domain of the basic scheme. Inequalities for accuracy and stability control are obtained. A numerical algorithm based on the firstorder method and the five-stage fourth order Merson method is developed. The algorithm is aimed at solving large-scale systems of ODEs of moderate stiffness with low accuracy. It has been included in the library of solvers of the ISMA simulation environment. Numerical results showing growth of the efficiency are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信