主宰二维正规诺瑟局部区域的素数的交点的理想理论

B. Olberding, W. Heinzer
{"title":"主宰二维正规诺瑟局部区域的素数的交点的理想理论","authors":"B. Olberding, W. Heinzer","doi":"10.4171/rsmup/62","DOIUrl":null,"url":null,"abstract":"Let $R$ be a normal Noetherian local domain of Krull dimension two. We examine intersections of rank one discrete valuation rings that birationally dominate $R$. We restrict to the class of prime divisors that dominate $R$ and show that if a collection of such prime divisors is taken below a certain ``level,'' then the intersection is an almost Dedekind domain having the property that every nonzero ideal can be represented uniquely as an irredundant intersection of powers of maximal ideals.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ideal theory of intersections of prime divisors dominating a normal Noetherian local domain of dimension two\",\"authors\":\"B. Olberding, W. Heinzer\",\"doi\":\"10.4171/rsmup/62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a normal Noetherian local domain of Krull dimension two. We examine intersections of rank one discrete valuation rings that birationally dominate $R$. We restrict to the class of prime divisors that dominate $R$ and show that if a collection of such prime divisors is taken below a certain ``level,'' then the intersection is an almost Dedekind domain having the property that every nonzero ideal can be represented uniquely as an irredundant intersection of powers of maximal ideals.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$R$是Krull维二的正规noether局部定义域。我们检查秩一离散估值环的交叉点,它们在两方面主导$R$。我们限制了支配R的素数因子的类别,并证明了如果这些素数因子的集合低于某个“水平”,那么这个交点是一个几乎Dedekind定义域,它具有这样的性质,即每个非零理想都可以唯一地表示为极大理想的幂的无冗余交点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ideal theory of intersections of prime divisors dominating a normal Noetherian local domain of dimension two
Let $R$ be a normal Noetherian local domain of Krull dimension two. We examine intersections of rank one discrete valuation rings that birationally dominate $R$. We restrict to the class of prime divisors that dominate $R$ and show that if a collection of such prime divisors is taken below a certain ``level,'' then the intersection is an almost Dedekind domain having the property that every nonzero ideal can be represented uniquely as an irredundant intersection of powers of maximal ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信