郑贤良 Zheng Xian-liang, 刘瑞雪 Liu Rui-xue, 夏明亮 Xia Mingliang, 曹召良 Cao Zhao-liang, 宣. X. Li
{"title":"基于液晶自适应光学的视网膜校正成像系统","authors":"郑贤良 Zheng Xian-liang, 刘瑞雪 Liu Rui-xue, 夏明亮 Xia Mingliang, 曹召良 Cao Zhao-liang, 宣. X. Li","doi":"10.3788/CO.20140701.0098","DOIUrl":null,"url":null,"abstract":"In order to realize high resolution retinal imaging,the technique of Liquid Crystal Adaptive Optics( LC-AO) and its utilize in retinal imaging is under investigation. Problems are settled in the research such as energy loss by polarization,limitation on field of view( FOV) and universality of LC-AO system in retinal imaging. Open-loop adaptive optics system is introduced to avoid the energy loss by polarization in closed-loop system. View field of imaging system is expanded by adhibition of an alterable diaphragm. Exposure ratio is reduced by a pulsed light source. Illumination is polarized to increase energy efficiency. Trial lens and dynamic,advanced target at infinite are used to increase the stability of pupil and reduce the impact of individual differences on human-eyes. Definition and contrast of images after correction are remarkably increased. FOV is enhanced from 200 μm to 500 μm. Exposure ratio is reduced to 1 /2 ~ 1 /3. High definition images are taken from samples with low resolution before. Most problems of LC-AO system for high resolution retinal imaging are settled.","PeriodicalId":10133,"journal":{"name":"Chinese Journal of Optics and Applied Optics","volume":"73 1","pages":"98-104"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Retinal correction imaging system based on liquid crystal adaptive optics\",\"authors\":\"郑贤良 Zheng Xian-liang, 刘瑞雪 Liu Rui-xue, 夏明亮 Xia Mingliang, 曹召良 Cao Zhao-liang, 宣. X. Li\",\"doi\":\"10.3788/CO.20140701.0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to realize high resolution retinal imaging,the technique of Liquid Crystal Adaptive Optics( LC-AO) and its utilize in retinal imaging is under investigation. Problems are settled in the research such as energy loss by polarization,limitation on field of view( FOV) and universality of LC-AO system in retinal imaging. Open-loop adaptive optics system is introduced to avoid the energy loss by polarization in closed-loop system. View field of imaging system is expanded by adhibition of an alterable diaphragm. Exposure ratio is reduced by a pulsed light source. Illumination is polarized to increase energy efficiency. Trial lens and dynamic,advanced target at infinite are used to increase the stability of pupil and reduce the impact of individual differences on human-eyes. Definition and contrast of images after correction are remarkably increased. FOV is enhanced from 200 μm to 500 μm. Exposure ratio is reduced to 1 /2 ~ 1 /3. High definition images are taken from samples with low resolution before. Most problems of LC-AO system for high resolution retinal imaging are settled.\",\"PeriodicalId\":10133,\"journal\":{\"name\":\"Chinese Journal of Optics and Applied Optics\",\"volume\":\"73 1\",\"pages\":\"98-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Optics and Applied Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/CO.20140701.0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Optics and Applied Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/CO.20140701.0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Retinal correction imaging system based on liquid crystal adaptive optics
In order to realize high resolution retinal imaging,the technique of Liquid Crystal Adaptive Optics( LC-AO) and its utilize in retinal imaging is under investigation. Problems are settled in the research such as energy loss by polarization,limitation on field of view( FOV) and universality of LC-AO system in retinal imaging. Open-loop adaptive optics system is introduced to avoid the energy loss by polarization in closed-loop system. View field of imaging system is expanded by adhibition of an alterable diaphragm. Exposure ratio is reduced by a pulsed light source. Illumination is polarized to increase energy efficiency. Trial lens and dynamic,advanced target at infinite are used to increase the stability of pupil and reduce the impact of individual differences on human-eyes. Definition and contrast of images after correction are remarkably increased. FOV is enhanced from 200 μm to 500 μm. Exposure ratio is reduced to 1 /2 ~ 1 /3. High definition images are taken from samples with low resolution before. Most problems of LC-AO system for high resolution retinal imaging are settled.