面向可伸缩时空降维的实时数据处理技术

Aleksandar Gavrić, Dušan Vujošcvić, Nemanja Radosavljević, Petar Prvulović
{"title":"面向可伸缩时空降维的实时数据处理技术","authors":"Aleksandar Gavrić, Dušan Vujošcvić, Nemanja Radosavljević, Petar Prvulović","doi":"10.1109/INFOTEH53737.2022.9751323","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSN) often generate data with high frequency per unit time. Values from sensor measurements are often redundant and provide little or no information. Methods of dimension reduction can be applied and thus only data of interest can be preserved for the purpose of effective analysis of wireless sensor networks' data. The authors show experimentally that it is possible to build more successful predictive models by reducing dimensions and discuss the potential advantages of reducing the spatial and temporal dimensions of sensor measurements in different applications. Authors present the implementation and analysis of an efficient distributed system that enables search, ranking, indexing, machine learning analysis and visualization of data from WSNs, processed in real-time.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction\",\"authors\":\"Aleksandar Gavrić, Dušan Vujošcvić, Nemanja Radosavljević, Petar Prvulović\",\"doi\":\"10.1109/INFOTEH53737.2022.9751323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSN) often generate data with high frequency per unit time. Values from sensor measurements are often redundant and provide little or no information. Methods of dimension reduction can be applied and thus only data of interest can be preserved for the purpose of effective analysis of wireless sensor networks' data. The authors show experimentally that it is possible to build more successful predictive models by reducing dimensions and discuss the potential advantages of reducing the spatial and temporal dimensions of sensor measurements in different applications. Authors present the implementation and analysis of an efficient distributed system that enables search, ranking, indexing, machine learning analysis and visualization of data from WSNs, processed in real-time.\",\"PeriodicalId\":6839,\"journal\":{\"name\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"54 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH53737.2022.9751323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络通常在单位时间内产生高频率的数据。传感器测量的值通常是冗余的,提供很少或没有信息。可以采用降维方法,从而仅保留感兴趣的数据,以便对无线传感器网络的数据进行有效分析。作者通过实验证明,通过降维可以建立更成功的预测模型,并讨论了在不同应用中降低传感器测量的空间和时间维的潜在优势。作者介绍了一个高效分布式系统的实现和分析,该系统可以实时处理来自wsn的数据的搜索,排名,索引,机器学习分析和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction
Wireless sensor networks (WSN) often generate data with high frequency per unit time. Values from sensor measurements are often redundant and provide little or no information. Methods of dimension reduction can be applied and thus only data of interest can be preserved for the purpose of effective analysis of wireless sensor networks' data. The authors show experimentally that it is possible to build more successful predictive models by reducing dimensions and discuss the potential advantages of reducing the spatial and temporal dimensions of sensor measurements in different applications. Authors present the implementation and analysis of an efficient distributed system that enables search, ranking, indexing, machine learning analysis and visualization of data from WSNs, processed in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信