{"title":"一种基于微调AraBERT模型的阿拉伯语情感分析混合网络","authors":"N. Habbat, H. Anoun, L. Hassouni","doi":"10.15676/ijeei.2021.13.4.3","DOIUrl":null,"url":null,"abstract":"The pre-trained word embedding models become widely used in Natural Language Processing (NLP), but they disregard the context and sense of the text. We study in this paper, the capacity of pre-trained BERT model (Bidirectional Encoder Representations from Transformers) for the Arabic language to classify Arabic tweets using a hybrid network of two famous models;Bidirectional Long Short Term Memory (BiLSTM) and Gated Recurrent Unit (GRU) inspired by the great achievement of deep learning algorithms. In this context, we finetuned the Arabic BERT (AraBERT) parameters and we used it on three merged datasets to impart its knowledge for the Arabic sentiment analysis. For that, we lead the experiments by comparing the AraBERT model in one hand in the word embedding phase, with a statics pretrained word embeddings method namely AraVec and FastText, and on another hand in the classification phase, we compared the hybrid model with convolutional neural network (CNN), long short-term memory (LSTM), BiLSTM, and GRU, which are prevalently preferred in sentiment analysis. The results demonstrate that the fine-tuned AraBERT model, combined with the hybrid network, achieved peak performance with up to 94% accuracy.","PeriodicalId":38705,"journal":{"name":"International Journal on Electrical Engineering and Informatics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel Hybrid Network for Arabic Sentiment Analysis using fine-tuned AraBERT model\",\"authors\":\"N. Habbat, H. Anoun, L. Hassouni\",\"doi\":\"10.15676/ijeei.2021.13.4.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pre-trained word embedding models become widely used in Natural Language Processing (NLP), but they disregard the context and sense of the text. We study in this paper, the capacity of pre-trained BERT model (Bidirectional Encoder Representations from Transformers) for the Arabic language to classify Arabic tweets using a hybrid network of two famous models;Bidirectional Long Short Term Memory (BiLSTM) and Gated Recurrent Unit (GRU) inspired by the great achievement of deep learning algorithms. In this context, we finetuned the Arabic BERT (AraBERT) parameters and we used it on three merged datasets to impart its knowledge for the Arabic sentiment analysis. For that, we lead the experiments by comparing the AraBERT model in one hand in the word embedding phase, with a statics pretrained word embeddings method namely AraVec and FastText, and on another hand in the classification phase, we compared the hybrid model with convolutional neural network (CNN), long short-term memory (LSTM), BiLSTM, and GRU, which are prevalently preferred in sentiment analysis. The results demonstrate that the fine-tuned AraBERT model, combined with the hybrid network, achieved peak performance with up to 94% accuracy.\",\"PeriodicalId\":38705,\"journal\":{\"name\":\"International Journal on Electrical Engineering and Informatics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15676/ijeei.2021.13.4.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15676/ijeei.2021.13.4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A Novel Hybrid Network for Arabic Sentiment Analysis using fine-tuned AraBERT model
The pre-trained word embedding models become widely used in Natural Language Processing (NLP), but they disregard the context and sense of the text. We study in this paper, the capacity of pre-trained BERT model (Bidirectional Encoder Representations from Transformers) for the Arabic language to classify Arabic tweets using a hybrid network of two famous models;Bidirectional Long Short Term Memory (BiLSTM) and Gated Recurrent Unit (GRU) inspired by the great achievement of deep learning algorithms. In this context, we finetuned the Arabic BERT (AraBERT) parameters and we used it on three merged datasets to impart its knowledge for the Arabic sentiment analysis. For that, we lead the experiments by comparing the AraBERT model in one hand in the word embedding phase, with a statics pretrained word embeddings method namely AraVec and FastText, and on another hand in the classification phase, we compared the hybrid model with convolutional neural network (CNN), long short-term memory (LSTM), BiLSTM, and GRU, which are prevalently preferred in sentiment analysis. The results demonstrate that the fine-tuned AraBERT model, combined with the hybrid network, achieved peak performance with up to 94% accuracy.
期刊介绍:
International Journal on Electrical Engineering and Informatics is a peer reviewed journal in the field of electrical engineering and informatics. The journal is published quarterly by The School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia. All papers will be blind reviewed. Accepted papers will be available on line (free access) and printed version. No publication fee. The journal publishes original papers in the field of electrical engineering and informatics which covers, but not limited to, the following scope : Power Engineering Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, Electrical Engineering Materials, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements Telecommunication Engineering Antenna and Wave Propagation, Modulation and Signal Processing for Telecommunication, Wireless and Mobile Communications, Information Theory and Coding, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services, Security Network, and Radio Communication. Computer Engineering Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, VLSI Design-Network Traffic Modeling, Performance Modeling, Dependable Computing, High Performance Computing, Computer Security.