量子仿射代数模范畴的PBW理论研究

Pub Date : 2020-05-11 DOI:10.3792/PJAA.97.007
M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park
{"title":"量子仿射代数模范畴的PBW理论研究","authors":"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park","doi":"10.3792/PJAA.97.007","DOIUrl":null,"url":null,"abstract":"Let $U_q'(\\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\\mathcal{C}^0_{\\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\\mathcal{D}$ in $\\mathcal{C}^0_{\\mathfrak{g}}$, we denote by $\\mathcal{F}_{\\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\\mathcal{D}$ to provide the functor $\\mathcal{F}_{\\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\\mathcal{C}^0_{\\mathfrak{g}}$, and show that all simple modules in $\\mathcal{C}^0_{\\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PBW theoretic approach to the module category of\\n quantum affine algebras\",\"authors\":\"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park\",\"doi\":\"10.3792/PJAA.97.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $U_q'(\\\\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\\\\mathcal{D}$ in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$, we denote by $\\\\mathcal{F}_{\\\\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\\\\mathcal{D}$ to provide the functor $\\\\mathcal{F}_{\\\\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$, and show that all simple modules in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.97.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.97.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$U_q'(\mathfrak{g})$是一个非扭曲仿射ADE型的量子仿射代数,设$\mathcal{C}^0_{\mathfrak{g}}$是Hernandez-Leclerc的范畴。对于$\mathcal{C}^0_{\mathfrak{g}}$中的对偶数据$\mathcal{D}$,我们用$\mathcal{F}_{\mathcal{D}}$表示量子仿射Weyl-Schur对偶函子。我们给出对偶数据$\mathcal{D}$的充分条件,以提供将简单模块发送到简单模块的函子$\mathcal{F}_{\mathcal{D}}$。然后在$\mathcal{C}^0_{\mathfrak{g}}$中引入了逆模的概念,并证明了$\mathcal{C}^0_{\mathfrak{g}}$中的所有简单模都可以构造为逆模的有序张量积的头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
PBW theoretic approach to the module category of quantum affine algebras
Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\mathcal{C}^0_{\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\mathcal{D}$ in $\mathcal{C}^0_{\mathfrak{g}}$, we denote by $\mathcal{F}_{\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\mathcal{D}$ to provide the functor $\mathcal{F}_{\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\mathcal{C}^0_{\mathfrak{g}}$, and show that all simple modules in $\mathcal{C}^0_{\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信