{"title":"量子仿射代数模范畴的PBW理论研究","authors":"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park","doi":"10.3792/PJAA.97.007","DOIUrl":null,"url":null,"abstract":"Let $U_q'(\\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\\mathcal{C}^0_{\\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\\mathcal{D}$ in $\\mathcal{C}^0_{\\mathfrak{g}}$, we denote by $\\mathcal{F}_{\\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\\mathcal{D}$ to provide the functor $\\mathcal{F}_{\\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\\mathcal{C}^0_{\\mathfrak{g}}$, and show that all simple modules in $\\mathcal{C}^0_{\\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PBW theoretic approach to the module category of\\n quantum affine algebras\",\"authors\":\"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park\",\"doi\":\"10.3792/PJAA.97.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $U_q'(\\\\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\\\\mathcal{D}$ in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$, we denote by $\\\\mathcal{F}_{\\\\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\\\\mathcal{D}$ to provide the functor $\\\\mathcal{F}_{\\\\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$, and show that all simple modules in $\\\\mathcal{C}^0_{\\\\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.97.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.97.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PBW theoretic approach to the module category of
quantum affine algebras
Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $\mathcal{C}^0_{\mathfrak{g}}$ be Hernandez-Leclerc's category. For a duality datum $\mathcal{D}$ in $\mathcal{C}^0_{\mathfrak{g}}$, we denote by $\mathcal{F}_{\mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $\mathcal{D}$ to provide the functor $\mathcal{F}_{\mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $\mathcal{C}^0_{\mathfrak{g}}$, and show that all simple modules in $\mathcal{C}^0_{\mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.