{"title":"分数阶气体动力学方程的α-Sumudu变换同伦摄动技术","authors":"Ali Moazzam, Adnan Shokat, Emad A. Kuffi","doi":"10.30526/36.1.3029","DOIUrl":null,"url":null,"abstract":" Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy perturbation technique and He’s polynomials are all incorporated in the HPSaTM. The availability of He’s polynomials could be used to conveniently manage the non-linearity. The suggested approach shows that the strategy is simple to implement and provides results that can be compared to the results gained from any other transformation technique.","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"α-Sumudu Transformation Homotopy Perturbation Technique on Fractional Gas Dynamical Equation\",\"authors\":\"Ali Moazzam, Adnan Shokat, Emad A. Kuffi\",\"doi\":\"10.30526/36.1.3029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy perturbation technique and He’s polynomials are all incorporated in the HPSaTM. The availability of He’s polynomials could be used to conveniently manage the non-linearity. The suggested approach shows that the strategy is simple to implement and provides results that can be compared to the results gained from any other transformation technique.\",\"PeriodicalId\":13022,\"journal\":{\"name\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/36.1.3029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.1.3029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
α-Sumudu Transformation Homotopy Perturbation Technique on Fractional Gas Dynamical Equation
Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy perturbation technique and He’s polynomials are all incorporated in the HPSaTM. The availability of He’s polynomials could be used to conveniently manage the non-linearity. The suggested approach shows that the strategy is simple to implement and provides results that can be compared to the results gained from any other transformation technique.