基因突变模型的流体极限

High Frequency Pub Date : 2019-11-15 DOI:10.1002/hf2.10046
Carlos Bajo Caraballo, Ilie Grigorescu
{"title":"基因突变模型的流体极限","authors":"Carlos Bajo Caraballo,&nbsp;Ilie Grigorescu","doi":"10.1002/hf2.10046","DOIUrl":null,"url":null,"abstract":"<p>We trace the time evolution of the number <i>U<sub>t</sub></i> of nondeleterious mutations, present in a gene modeled by a word of length <i>L</i> and DNA fragments by characters labeled 0, 1,…, <i>N</i>. For simplification, deleterious mutations are codified as equal to 0. The discrete case studied in Grigorescu (<i>Stochastic Models</i>, 29, 2013 p. 328), is a modified version of the Pólya urn, where the two types are exactly the zeros and nonzeros. A random continuous-time binary mutation model, where the probability of creating a deleterious mutation is 1/<i>N</i>, while the probability of recovery <math>\n <mrow>\n <mi>γ</mi>\n <mo>(</mo>\n <msup>\n <mi>L</mi>\n <mrow>\n <mo>-</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msub>\n <mi>U</mi>\n <mi>Lt</mi>\n </msub>\n <mo>)</mo>\n </mrow></math>, <i>γ</i> continuous, is studied under a Eulerian scaling <math>\n <mrow>\n <msubsup>\n <mi>u</mi>\n <mi>t</mi>\n <mi>L</mi>\n </msubsup>\n <mo>=</mo>\n <msup>\n <mi>L</mi>\n <mrow>\n <mo>-</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msub>\n <mi>U</mi>\n <mi>Lt</mi>\n </msub>\n </mrow></math>, <i>L</i> → ∞. The fluid limit <i>u<sub>t</sub></i>, emerging due to the high frequency scale of mutations, is the solution of a deterministic generalized logistic equation. The power law <i>γ</i>(<i>u</i>) = <i>cu<sup>a</sup></i> captures important features in both genetical and epidemiological interpretations, with <i>c</i> being the intensity of the intervention, <i>a</i> the strength/virulence of the disease, and 1/<i>N</i> the decay rate/infectiousness. Among other applications, we obtain a quantitative study of Δ<i>T</i>, the maximal interval between tests. Several stochastic optimization problems, including a generalization of the Shepp urn (<i>The Annals of Mathematical Statistics</i>, 40, 1969 p. 993), are proposed.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 3-4","pages":"147-157"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10046","citationCount":"0","resultStr":"{\"title\":\"Fluid limit for a genetic mutation model\",\"authors\":\"Carlos Bajo Caraballo,&nbsp;Ilie Grigorescu\",\"doi\":\"10.1002/hf2.10046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We trace the time evolution of the number <i>U<sub>t</sub></i> of nondeleterious mutations, present in a gene modeled by a word of length <i>L</i> and DNA fragments by characters labeled 0, 1,…, <i>N</i>. For simplification, deleterious mutations are codified as equal to 0. The discrete case studied in Grigorescu (<i>Stochastic Models</i>, 29, 2013 p. 328), is a modified version of the Pólya urn, where the two types are exactly the zeros and nonzeros. A random continuous-time binary mutation model, where the probability of creating a deleterious mutation is 1/<i>N</i>, while the probability of recovery <math>\\n <mrow>\\n <mi>γ</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>L</mi>\\n <mrow>\\n <mo>-</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <msub>\\n <mi>U</mi>\\n <mi>Lt</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow></math>, <i>γ</i> continuous, is studied under a Eulerian scaling <math>\\n <mrow>\\n <msubsup>\\n <mi>u</mi>\\n <mi>t</mi>\\n <mi>L</mi>\\n </msubsup>\\n <mo>=</mo>\\n <msup>\\n <mi>L</mi>\\n <mrow>\\n <mo>-</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <msub>\\n <mi>U</mi>\\n <mi>Lt</mi>\\n </msub>\\n </mrow></math>, <i>L</i> → ∞. The fluid limit <i>u<sub>t</sub></i>, emerging due to the high frequency scale of mutations, is the solution of a deterministic generalized logistic equation. The power law <i>γ</i>(<i>u</i>) = <i>cu<sup>a</sup></i> captures important features in both genetical and epidemiological interpretations, with <i>c</i> being the intensity of the intervention, <i>a</i> the strength/virulence of the disease, and 1/<i>N</i> the decay rate/infectiousness. Among other applications, we obtain a quantitative study of Δ<i>T</i>, the maximal interval between tests. Several stochastic optimization problems, including a generalization of the Shepp urn (<i>The Annals of Mathematical Statistics</i>, 40, 1969 p. 993), are proposed.</p>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 3-4\",\"pages\":\"147-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们追踪了非有害突变数量Ut的时间演化,这些突变存在于一个长度为L的单词和标记为0,1,…,n的DNA片段中,为了简化,有害突变被编码为等于0。Grigorescu (Stochastic Models, 29,2013 p. 328)研究的离散情况是Pólya urn的修改版本,其中两种类型恰好是零和非零。一个随机连续时间二元突变模型,其中产生有害突变的概率为1/N,而恢复的概率为γ (L - 1 U Lt), γ连续,在欧拉尺度下研究了L = L - 1 u L, L→∞。由于突变的高频率尺度而出现的流体极限是确定性广义logistic方程的解。幂律γ(u) = cua捕获了遗传和流行病学解释中的重要特征,其中c表示干预的强度,a表示疾病的强度/毒性,1/N表示衰减率/传染性。在其他应用中,我们获得了ΔT的定量研究,即测试之间的最大间隔。提出了几个随机优化问题,包括对Shepp模型的一个推广(the Annals of Mathematical Statistics, 1940, 1969 p. 993)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluid limit for a genetic mutation model

Fluid limit for a genetic mutation model

We trace the time evolution of the number Ut of nondeleterious mutations, present in a gene modeled by a word of length L and DNA fragments by characters labeled 0, 1,…, N. For simplification, deleterious mutations are codified as equal to 0. The discrete case studied in Grigorescu (Stochastic Models, 29, 2013 p. 328), is a modified version of the Pólya urn, where the two types are exactly the zeros and nonzeros. A random continuous-time binary mutation model, where the probability of creating a deleterious mutation is 1/N, while the probability of recovery γ ( L - 1 U Lt ) , γ continuous, is studied under a Eulerian scaling u t L = L - 1 U Lt , L → ∞. The fluid limit ut, emerging due to the high frequency scale of mutations, is the solution of a deterministic generalized logistic equation. The power law γ(u) = cua captures important features in both genetical and epidemiological interpretations, with c being the intensity of the intervention, a the strength/virulence of the disease, and 1/N the decay rate/infectiousness. Among other applications, we obtain a quantitative study of ΔT, the maximal interval between tests. Several stochastic optimization problems, including a generalization of the Shepp urn (The Annals of Mathematical Statistics, 40, 1969 p. 993), are proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信