{"title":"基于Strichartz估计的三维克尔非线性Maxwell方程的适定性","authors":"R. Schippa","doi":"10.5445/IR/1000136611","DOIUrl":null,"url":null,"abstract":"We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Well-posedness for Maxwell equations with Kerr nonlinearity in three dimensions via Strichartz estimates\",\"authors\":\"R. Schippa\",\"doi\":\"10.5445/IR/1000136611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000136611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000136611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Well-posedness for Maxwell equations with Kerr nonlinearity in three dimensions via Strichartz estimates
We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.