基于Strichartz估计的三维克尔非线性Maxwell方程的适定性

R. Schippa
{"title":"基于Strichartz估计的三维克尔非线性Maxwell方程的适定性","authors":"R. Schippa","doi":"10.5445/IR/1000136611","DOIUrl":null,"url":null,"abstract":"We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Well-posedness for Maxwell equations with Kerr nonlinearity in three dimensions via Strichartz estimates\",\"authors\":\"R. Schippa\",\"doi\":\"10.5445/IR/1000136611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000136611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000136611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了三维拟线性麦克斯韦方程组的新的局部适定性结果,并着重讨论了克尔非线性。为此,通过对半波方程的共轭,证明了粗糙介电常数解的新的Strichartz估计。我们使用已知的strstrichartz估计与能量估计的组合来推导新的适定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness for Maxwell equations with Kerr nonlinearity in three dimensions via Strichartz estimates
We show new local well-posedness results for quasilinear Maxwell equations in three spatial dimensions with an emphasis on the Kerr nonlinearity. For this purpose, new Strichartz estimates are proved for solutions with rough permittivity by conjugation to half-wave equations. We use the Strichartz estimates in a known combination with energy estimates to derive the new well-posedness results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信