从Weyl团体的家庭到Springer代表

IF 0.1 Q4 MATHEMATICS
G. Lusztig
{"title":"从Weyl团体的家庭到Springer代表","authors":"G. Lusztig","doi":"10.21915/bimas.2023101","DOIUrl":null,"url":null,"abstract":"Let G be a simple reductive group over the complex numbers. Let W be the Weyl group of G. We propose a description of the Springer representations of W associated to various unipotent classes of G by a purely algebraic method involving the families of various reflection subgroups of W and which is suitable to computer calculations.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"106 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"From families in Weyl groups to Springer representations\",\"authors\":\"G. Lusztig\",\"doi\":\"10.21915/bimas.2023101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple reductive group over the complex numbers. Let W be the Weyl group of G. We propose a description of the Springer representations of W associated to various unipotent classes of G by a purely algebraic method involving the families of various reflection subgroups of W and which is suitable to computer calculations.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2023101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2023101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设G是复数上的一个简约群。设W是G的Weyl群,我们用涉及W的各种反射子群族的纯代数方法,给出了与G的各种单幂类相关的W的Springer表示的描述,该描述适合于计算机计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From families in Weyl groups to Springer representations
Let G be a simple reductive group over the complex numbers. Let W be the Weyl group of G. We propose a description of the Springer representations of W associated to various unipotent classes of G by a purely algebraic method involving the families of various reflection subgroups of W and which is suitable to computer calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信