{"title":"新型梯形通道管状通道角挤压Al-6061管残余应力分布的实验与数值研究","authors":"A. Aghababaei, M. Honarpisheh","doi":"10.1177/03093247221113229","DOIUrl":null,"url":null,"abstract":"Tubular channel angular pressing (TCAP) method is an appropriate severe plastic deformation (SPD) techniques for the generation of ultra-fine grained (UFG) and nanostructured (NS) tubes. In forming methods, the measurement of residual stresses is very important due to their significant effects on the processed samples. Therefore, determining the residual stresses created by the TCAP method in metals is of great importance. In this research, the distribution of residual stresses in Al-6061 tubes under the TCAP process, was studied experimentally and numerically. For this purpose, first the TCAP process was applied on Al-6061 tubes and after that the residual stresses generated in the TCAPed tubes were measured. Sachs method was used experimentally to measure the residual stresses. Sachs method is one of the destructive, convenient and efficient methods for measuring the residual stresses of axisymmetric cylindrical samples. Residual stresses measured by Sachs method in the processed samples showed that the tensile and compressive residual stresses were created on the external and internal tube surfaces, respectively. In addition, a good agreement was existed between the results of the numerical simulation and experimental methods for measuring the residual stress distribution.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"126 1","pages":"332 - 342"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and numerical investigation of residual stress distribution in Al-6061 tubes under using tubular channel angular pressing process by new trapezoidal channel\",\"authors\":\"A. Aghababaei, M. Honarpisheh\",\"doi\":\"10.1177/03093247221113229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tubular channel angular pressing (TCAP) method is an appropriate severe plastic deformation (SPD) techniques for the generation of ultra-fine grained (UFG) and nanostructured (NS) tubes. In forming methods, the measurement of residual stresses is very important due to their significant effects on the processed samples. Therefore, determining the residual stresses created by the TCAP method in metals is of great importance. In this research, the distribution of residual stresses in Al-6061 tubes under the TCAP process, was studied experimentally and numerically. For this purpose, first the TCAP process was applied on Al-6061 tubes and after that the residual stresses generated in the TCAPed tubes were measured. Sachs method was used experimentally to measure the residual stresses. Sachs method is one of the destructive, convenient and efficient methods for measuring the residual stresses of axisymmetric cylindrical samples. Residual stresses measured by Sachs method in the processed samples showed that the tensile and compressive residual stresses were created on the external and internal tube surfaces, respectively. In addition, a good agreement was existed between the results of the numerical simulation and experimental methods for measuring the residual stress distribution.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":\"126 1\",\"pages\":\"332 - 342\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221113229\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221113229","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and numerical investigation of residual stress distribution in Al-6061 tubes under using tubular channel angular pressing process by new trapezoidal channel
Tubular channel angular pressing (TCAP) method is an appropriate severe plastic deformation (SPD) techniques for the generation of ultra-fine grained (UFG) and nanostructured (NS) tubes. In forming methods, the measurement of residual stresses is very important due to their significant effects on the processed samples. Therefore, determining the residual stresses created by the TCAP method in metals is of great importance. In this research, the distribution of residual stresses in Al-6061 tubes under the TCAP process, was studied experimentally and numerically. For this purpose, first the TCAP process was applied on Al-6061 tubes and after that the residual stresses generated in the TCAPed tubes were measured. Sachs method was used experimentally to measure the residual stresses. Sachs method is one of the destructive, convenient and efficient methods for measuring the residual stresses of axisymmetric cylindrical samples. Residual stresses measured by Sachs method in the processed samples showed that the tensile and compressive residual stresses were created on the external and internal tube surfaces, respectively. In addition, a good agreement was existed between the results of the numerical simulation and experimental methods for measuring the residual stress distribution.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).