{"title":"有界区域上延迟五阶kdv型方程的镇定结果","authors":"R. A. Capistrano-Filho, V. H. Martinez","doi":"10.3934/mcrf.2023004","DOIUrl":null,"url":null,"abstract":"Studied here is the Kawahara equation, a fifth order Korteweg-de Vries type equation, with time-delayed internal feedback. Under suitable assumptions on the time delay coefficients we prove that solutions of this system are exponentially stable. First, considering a damping and delayed system, with some restriction of the spatial length of the domain, we prove that the Kawahara system is exponentially stable for $T>T_{\\min}$. After that, introducing a more general delayed system, and by introducing suitable energies, we show using Lyapunov approach, that the energy of the Kawahara equation goes to zero exponentially, considering the initial data small and a restriction in the spatial length of the domain. To remove these hypotheses, we use the compactness-uniqueness argument which reduces our problem to prove an observability inequality, showing a semi-global stabilization result.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Stabilization results for delayed fifth-order KdV-type equation in a bounded domain\",\"authors\":\"R. A. Capistrano-Filho, V. H. Martinez\",\"doi\":\"10.3934/mcrf.2023004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studied here is the Kawahara equation, a fifth order Korteweg-de Vries type equation, with time-delayed internal feedback. Under suitable assumptions on the time delay coefficients we prove that solutions of this system are exponentially stable. First, considering a damping and delayed system, with some restriction of the spatial length of the domain, we prove that the Kawahara system is exponentially stable for $T>T_{\\\\min}$. After that, introducing a more general delayed system, and by introducing suitable energies, we show using Lyapunov approach, that the energy of the Kawahara equation goes to zero exponentially, considering the initial data small and a restriction in the spatial length of the domain. To remove these hypotheses, we use the compactness-uniqueness argument which reduces our problem to prove an observability inequality, showing a semi-global stabilization result.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2023004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2023004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stabilization results for delayed fifth-order KdV-type equation in a bounded domain
Studied here is the Kawahara equation, a fifth order Korteweg-de Vries type equation, with time-delayed internal feedback. Under suitable assumptions on the time delay coefficients we prove that solutions of this system are exponentially stable. First, considering a damping and delayed system, with some restriction of the spatial length of the domain, we prove that the Kawahara system is exponentially stable for $T>T_{\min}$. After that, introducing a more general delayed system, and by introducing suitable energies, we show using Lyapunov approach, that the energy of the Kawahara equation goes to zero exponentially, considering the initial data small and a restriction in the spatial length of the domain. To remove these hypotheses, we use the compactness-uniqueness argument which reduces our problem to prove an observability inequality, showing a semi-global stabilization result.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.