{"title":"含孔洞弹性材料力学松弛时间的影响","authors":"R. Lianngenga, L. Thangmawia","doi":"10.33493/SCIVIS.19.02.09","DOIUrl":null,"url":null,"abstract":"The effect of mechanical relaxation time in the elastic wave propagation in elastic materials with voids is investigated. The phase speed and the attenuation coefficients are obtained and observed the effect of mechanical relaxation time. The phenomenon of reflection of elastic waves due to the incident waves from a plane boundary of elastic materials with voids is studied. The amplitude and energy ratios of the reflected waves are obtained. Numerically these ratios, phase speeds and the corresponding attenuation coefficients are computed for a particular model and the effect of mechanical relaxation time is discussed.","PeriodicalId":21329,"journal":{"name":"科技视界","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mechanical relaxation time in elastic materials with voids\",\"authors\":\"R. Lianngenga, L. Thangmawia\",\"doi\":\"10.33493/SCIVIS.19.02.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of mechanical relaxation time in the elastic wave propagation in elastic materials with voids is investigated. The phase speed and the attenuation coefficients are obtained and observed the effect of mechanical relaxation time. The phenomenon of reflection of elastic waves due to the incident waves from a plane boundary of elastic materials with voids is studied. The amplitude and energy ratios of the reflected waves are obtained. Numerically these ratios, phase speeds and the corresponding attenuation coefficients are computed for a particular model and the effect of mechanical relaxation time is discussed.\",\"PeriodicalId\":21329,\"journal\":{\"name\":\"科技视界\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"科技视界\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.33493/SCIVIS.19.02.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"科技视界","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.33493/SCIVIS.19.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of mechanical relaxation time in elastic materials with voids
The effect of mechanical relaxation time in the elastic wave propagation in elastic materials with voids is investigated. The phase speed and the attenuation coefficients are obtained and observed the effect of mechanical relaxation time. The phenomenon of reflection of elastic waves due to the incident waves from a plane boundary of elastic materials with voids is studied. The amplitude and energy ratios of the reflected waves are obtained. Numerically these ratios, phase speeds and the corresponding attenuation coefficients are computed for a particular model and the effect of mechanical relaxation time is discussed.
期刊介绍:
Science & Technology Vision is a science and technology journal supervised by the Shanghai Association for Science and Technology and sponsored by the Shanghai Science Writers Association. It takes grassroots science and education workers as readers, popularizes scientific knowledge, tracks hot issues in science and technology at home and abroad, pays attention to new developments, new technologies, and new achievements in the forefront of the science and technology community, adheres to the combination of theory and practice, popularization and exploration, integrates scientificity, knowledge, academicity, and foresight, and builds a platform and theoretical position for academic debate for the majority of science and technology workers. Science & Technology Vision has been fully included in "China National Knowledge Infrastructure", "Chinese Science and Technology Journal (VIP) Database", "Longyuan Journal Network", "Education Reading Network", and "Wanfang Database".