P. Aravinda, S. Sooriyaarachchi, C. Gamage, N. Kottege
{"title":"利用机器学习技术优化基于RSSI的室内定位和跟踪,以监控危险工作区域的工人","authors":"P. Aravinda, S. Sooriyaarachchi, C. Gamage, N. Kottege","doi":"10.1109/ICOIN50884.2021.9334026","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for RSSI based indoor localization and tracking in cluttered environments using Deep Neural Networks. We implemented a real-time system to localize people using wearable active RF tags and RF receivers fixed in an industrial environment with high RF noise. The proposed solution is advantageous in analysing RSSI data in cluttered-indoor environments with the presence of human body attenuation, signal distortion, and environmental noise. Simulations and experiments on a hardware testbed demonstrated that receiver arrangement, number of receivers and amount of line of sight signals captured by receivers are important parameters for improving localization and tracking accuracy. The effect of RF signal attenuation through the person who carries the tag was combined with two neural network models trained with RSSI data pertaining to two walking directions. This method was successful in predicting the walking direction of the person.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"36 1","pages":"305-310"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of RSSI based indoor localization and tracking to monitor workers in a hazardous working zone using Machine Learning techniques\",\"authors\":\"P. Aravinda, S. Sooriyaarachchi, C. Gamage, N. Kottege\",\"doi\":\"10.1109/ICOIN50884.2021.9334026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for RSSI based indoor localization and tracking in cluttered environments using Deep Neural Networks. We implemented a real-time system to localize people using wearable active RF tags and RF receivers fixed in an industrial environment with high RF noise. The proposed solution is advantageous in analysing RSSI data in cluttered-indoor environments with the presence of human body attenuation, signal distortion, and environmental noise. Simulations and experiments on a hardware testbed demonstrated that receiver arrangement, number of receivers and amount of line of sight signals captured by receivers are important parameters for improving localization and tracking accuracy. The effect of RF signal attenuation through the person who carries the tag was combined with two neural network models trained with RSSI data pertaining to two walking directions. This method was successful in predicting the walking direction of the person.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"36 1\",\"pages\":\"305-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9334026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9334026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of RSSI based indoor localization and tracking to monitor workers in a hazardous working zone using Machine Learning techniques
This paper proposes a method for RSSI based indoor localization and tracking in cluttered environments using Deep Neural Networks. We implemented a real-time system to localize people using wearable active RF tags and RF receivers fixed in an industrial environment with high RF noise. The proposed solution is advantageous in analysing RSSI data in cluttered-indoor environments with the presence of human body attenuation, signal distortion, and environmental noise. Simulations and experiments on a hardware testbed demonstrated that receiver arrangement, number of receivers and amount of line of sight signals captured by receivers are important parameters for improving localization and tracking accuracy. The effect of RF signal attenuation through the person who carries the tag was combined with two neural network models trained with RSSI data pertaining to two walking directions. This method was successful in predicting the walking direction of the person.