基于GM估计的鲁棒Liu型估计

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Melike Işilar, Y. M. Bulut
{"title":"基于GM估计的鲁棒Liu型估计","authors":"Melike Işilar, Y. M. Bulut","doi":"10.1111/stan.12310","DOIUrl":null,"url":null,"abstract":"Ordinary Least Squares Estimator (OLSE) is widely used to estimate parameters in regression analysis. In practice, the assumptions of regression analysis are often not met. The most common problems that break these assumptions are outliers and multicollinearity problems. As a result of these problems, OLSE loses efficiency. Therefore, alternative estimators to OLSE have been proposed to solve these problems. Robust estimators are often used to solve the outlier problem, and biased estimators are often used to solve the multicollinearity problem. These problems do not always occur individually in the real‐world dataset. Therefore, robust biased estimators are proposed for simultaneous solutions to these problems. The aim of this study is to propose Liu‐type Generalized M Estimator as an alternative to the robust biased estimators available in the literature to obtain more efficient results. This estimator gives effective results in the case of outlier and multicollinearity in both dependent and independent variables. The proposed estimator is theoretically compared with other estimators available in the literature. In addition, Monte Carlo simulation and real dataset example are performed to compare the performance of the estimator with existing estimators.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"31 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Liu‐type Estimator based on GM estimator\",\"authors\":\"Melike Işilar, Y. M. Bulut\",\"doi\":\"10.1111/stan.12310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordinary Least Squares Estimator (OLSE) is widely used to estimate parameters in regression analysis. In practice, the assumptions of regression analysis are often not met. The most common problems that break these assumptions are outliers and multicollinearity problems. As a result of these problems, OLSE loses efficiency. Therefore, alternative estimators to OLSE have been proposed to solve these problems. Robust estimators are often used to solve the outlier problem, and biased estimators are often used to solve the multicollinearity problem. These problems do not always occur individually in the real‐world dataset. Therefore, robust biased estimators are proposed for simultaneous solutions to these problems. The aim of this study is to propose Liu‐type Generalized M Estimator as an alternative to the robust biased estimators available in the literature to obtain more efficient results. This estimator gives effective results in the case of outlier and multicollinearity in both dependent and independent variables. The proposed estimator is theoretically compared with other estimators available in the literature. In addition, Monte Carlo simulation and real dataset example are performed to compare the performance of the estimator with existing estimators.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12310\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12310","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Liu‐type Estimator based on GM estimator
Ordinary Least Squares Estimator (OLSE) is widely used to estimate parameters in regression analysis. In practice, the assumptions of regression analysis are often not met. The most common problems that break these assumptions are outliers and multicollinearity problems. As a result of these problems, OLSE loses efficiency. Therefore, alternative estimators to OLSE have been proposed to solve these problems. Robust estimators are often used to solve the outlier problem, and biased estimators are often used to solve the multicollinearity problem. These problems do not always occur individually in the real‐world dataset. Therefore, robust biased estimators are proposed for simultaneous solutions to these problems. The aim of this study is to propose Liu‐type Generalized M Estimator as an alternative to the robust biased estimators available in the literature to obtain more efficient results. This estimator gives effective results in the case of outlier and multicollinearity in both dependent and independent variables. The proposed estimator is theoretically compared with other estimators available in the literature. In addition, Monte Carlo simulation and real dataset example are performed to compare the performance of the estimator with existing estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信