越南语图像字幕特征提取方法的实证研究

Khang Nguyen
{"title":"越南语图像字幕特征提取方法的实证研究","authors":"Khang Nguyen","doi":"10.15625/1813-9663/38/4/17548","DOIUrl":null,"url":null,"abstract":"Image captioning is a challenging task that is still being addressed in the 2020s. The problem has the input as an image, and the output is the generated caption that describes the context of the input image. In this study, I focus on the image captioning problem in Vietnamese. In detail, I present the empirical study of feature extraction approaches using current state-of-the-art object detection methods to represent the images in the model space. Each type of feature is trained with the Transformer-based captioning model. I investigate the effectiveness of different feature types on two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. The experimental results show crucial insight into the feature extraction task for image captioning in Vietnamese.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMPIRICAL STUDY OF FEATURE EXTRACTION APPROACHES FOR IMAGE CAPTIONING IN VIETNAMESE\",\"authors\":\"Khang Nguyen\",\"doi\":\"10.15625/1813-9663/38/4/17548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning is a challenging task that is still being addressed in the 2020s. The problem has the input as an image, and the output is the generated caption that describes the context of the input image. In this study, I focus on the image captioning problem in Vietnamese. In detail, I present the empirical study of feature extraction approaches using current state-of-the-art object detection methods to represent the images in the model space. Each type of feature is trained with the Transformer-based captioning model. I investigate the effectiveness of different feature types on two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. The experimental results show crucial insight into the feature extraction task for image captioning in Vietnamese.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/38/4/17548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/4/17548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像字幕是一项具有挑战性的任务,在21世纪20年代仍有待解决。问题的输入是图像,输出是生成的描述输入图像上下文的标题。在本研究中,我主要研究越南语的图像字幕问题。详细地说,我介绍了使用当前最先进的目标检测方法来表示模型空间中的图像的特征提取方法的实证研究。每种类型的特征都使用基于transformer的字幕模型进行训练。我研究了两个越南数据集上不同特征类型的有效性:unit - viic和VieCap4H,这两个标准基准数据集。实验结果为越南语图像字幕的特征提取任务提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMPIRICAL STUDY OF FEATURE EXTRACTION APPROACHES FOR IMAGE CAPTIONING IN VIETNAMESE
Image captioning is a challenging task that is still being addressed in the 2020s. The problem has the input as an image, and the output is the generated caption that describes the context of the input image. In this study, I focus on the image captioning problem in Vietnamese. In detail, I present the empirical study of feature extraction approaches using current state-of-the-art object detection methods to represent the images in the model space. Each type of feature is trained with the Transformer-based captioning model. I investigate the effectiveness of different feature types on two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. The experimental results show crucial insight into the feature extraction task for image captioning in Vietnamese.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信