土鲁棕榈叶手稿文字的分割与识别

Q3 Computer Science
P. J. Antony, C. K. Savitha
{"title":"土鲁棕榈叶手稿文字的分割与识别","authors":"P. J. Antony, C. K. Savitha","doi":"10.1504/ijcvr.2019.10023895","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient method for segmentation and recognition of handwritten characters from Tulu palm leaf manuscript images. The proposed method uses an automated tool with a combination of thresholding and edge detection technique to binarise the image. Further projection profile with connected component analysis is used to line and character segmentation. Deep convolution neural network (DCNN) model used here to extract features and recognise segmented Tulu characters efficiently with a recognition rate of 79.92%. The results are verified using benchmark dataset, the AMADI_LontarSet to generalise our model to handwritten character recognition task. The results showed that our method outperforms from the existing state of art models.","PeriodicalId":38525,"journal":{"name":"International Journal of Computational Vision and Robotics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation and recognition of characters on Tulu palm leaf manuscripts\",\"authors\":\"P. J. Antony, C. K. Savitha\",\"doi\":\"10.1504/ijcvr.2019.10023895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient method for segmentation and recognition of handwritten characters from Tulu palm leaf manuscript images. The proposed method uses an automated tool with a combination of thresholding and edge detection technique to binarise the image. Further projection profile with connected component analysis is used to line and character segmentation. Deep convolution neural network (DCNN) model used here to extract features and recognise segmented Tulu characters efficiently with a recognition rate of 79.92%. The results are verified using benchmark dataset, the AMADI_LontarSet to generalise our model to handwritten character recognition task. The results showed that our method outperforms from the existing state of art models.\",\"PeriodicalId\":38525,\"journal\":{\"name\":\"International Journal of Computational Vision and Robotics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Vision and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcvr.2019.10023895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Vision and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcvr.2019.10023895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高效的图鲁棕榈叶手写体文字分割与识别方法。该方法采用一种自动工具,结合阈值分割和边缘检测技术对图像进行二值化处理。进一步将投影轮廓与连通分量分析相结合,进行线和字符分割。本文采用深度卷积神经网络(Deep convolution neural network, DCNN)模型对图鲁字符进行特征提取和识别,识别率达到79.92%。使用基准数据集AMADI_LontarSet验证了结果,将我们的模型推广到手写体字符识别任务。结果表明,我们的方法优于现有的最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation and recognition of characters on Tulu palm leaf manuscripts
This paper proposes an efficient method for segmentation and recognition of handwritten characters from Tulu palm leaf manuscript images. The proposed method uses an automated tool with a combination of thresholding and edge detection technique to binarise the image. Further projection profile with connected component analysis is used to line and character segmentation. Deep convolution neural network (DCNN) model used here to extract features and recognise segmented Tulu characters efficiently with a recognition rate of 79.92%. The results are verified using benchmark dataset, the AMADI_LontarSet to generalise our model to handwritten character recognition task. The results showed that our method outperforms from the existing state of art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Vision and Robotics
International Journal of Computational Vision and Robotics Computer Science-Computer Science Applications
CiteScore
1.80
自引率
0.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信