基于模型的三维方向特征聚类:在深度图像分析中的应用

A. Hasnat, O. Alata, A. Trémeau
{"title":"基于模型的三维方向特征聚类:在深度图像分析中的应用","authors":"A. Hasnat, O. Alata, A. Trémeau","doi":"10.1109/ICIP.2014.7025765","DOIUrl":null,"url":null,"abstract":"Model Based Clustering (MBC) is a method that estimates a model for the data and produces probabilistic clustering. In this paper, we propose a novel MBC method to cluster three dimensional directional features. We assume that the features are generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. The core elements of our proposed method are: (a) generate a set of vMF Mixture Models (vMFMM) and (b) select the optimal model using a parsimony based approach with information criteria. We empirically validate our proposed method by applying it on simulated data. Next, we apply it to cluster image normals in order to perform depth image analysis.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"49 1","pages":"3768-3772"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model based clustering for 3D directional features: Application to depth image analysis\",\"authors\":\"A. Hasnat, O. Alata, A. Trémeau\",\"doi\":\"10.1109/ICIP.2014.7025765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Based Clustering (MBC) is a method that estimates a model for the data and produces probabilistic clustering. In this paper, we propose a novel MBC method to cluster three dimensional directional features. We assume that the features are generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. The core elements of our proposed method are: (a) generate a set of vMF Mixture Models (vMFMM) and (b) select the optimal model using a parsimony based approach with information criteria. We empirically validate our proposed method by applying it on simulated data. Next, we apply it to cluster image normals in order to perform depth image analysis.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"49 1\",\"pages\":\"3768-3772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于模型的聚类(MBC)是一种估计数据模型并产生概率聚类的方法。在本文中,我们提出了一种新的MBC方法来聚类三维方向特征。我们假设这些特征是由基于von Mises-Fisher (vMF)分布的有限统计混合模型产生的。我们提出的方法的核心要素是:(a)生成一组vMF混合模型(vMFMM); (b)使用基于信息标准的简约方法选择最优模型。通过对模拟数据的实验验证了本文提出的方法。接下来,我们将其应用于聚类图像法线以进行深度图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model based clustering for 3D directional features: Application to depth image analysis
Model Based Clustering (MBC) is a method that estimates a model for the data and produces probabilistic clustering. In this paper, we propose a novel MBC method to cluster three dimensional directional features. We assume that the features are generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. The core elements of our proposed method are: (a) generate a set of vMF Mixture Models (vMFMM) and (b) select the optimal model using a parsimony based approach with information criteria. We empirically validate our proposed method by applying it on simulated data. Next, we apply it to cluster image normals in order to perform depth image analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信