海狸

Zhongjun (Mark) Jin, Christopher Baik, Michael J. Cafarella, H. Jagadish
{"title":"海狸","authors":"Zhongjun (Mark) Jin, Christopher Baik, Michael J. Cafarella, H. Jagadish","doi":"10.1145/3209900.3209902","DOIUrl":null,"url":null,"abstract":"Schema mapping is used to transform data to a desired schema from data sources with different schemas. Manually writing complete schema mapping specifications requires a deep understanding of the source and target schemas, which can be burdensome for the user. Programming By Example (PBE) schema mapping methods allow the user to describe the schema mapping using data records. However, real data records are still harder to specify compared to other useful insights about the desired schema mapping the user might have. In this project, we develop a new schema mapping technique, Beaver, that enables an interaction model that gives the user more flexibility in describing the desired schema mapping. The end user is not limited to providing exact and complete target schema data examples but may also provide incomplete or ambiguous examples. Moreover, the user can provide other types of descriptions, like data type or value range, about the target schema. We design an explore-and-verify search-based algorithm to efficiently discover all satisfying schema mapping specifications. We implemented a prototype of our schema mapping technique and experimentally evaluated the efficiency of the system in handling traditional PBE schema mapping test cases, as well as our newly-proposed declarative schema mapping test cases. The experiment results show that the declarative queries, which we believe are easier for non-expert user to input, often cost around zero to five seconds more than the traditional PBE queries. This suggests we retain a system efficiency comparable to traditional PBE schema mapping systems.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Beaver\",\"authors\":\"Zhongjun (Mark) Jin, Christopher Baik, Michael J. Cafarella, H. Jagadish\",\"doi\":\"10.1145/3209900.3209902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schema mapping is used to transform data to a desired schema from data sources with different schemas. Manually writing complete schema mapping specifications requires a deep understanding of the source and target schemas, which can be burdensome for the user. Programming By Example (PBE) schema mapping methods allow the user to describe the schema mapping using data records. However, real data records are still harder to specify compared to other useful insights about the desired schema mapping the user might have. In this project, we develop a new schema mapping technique, Beaver, that enables an interaction model that gives the user more flexibility in describing the desired schema mapping. The end user is not limited to providing exact and complete target schema data examples but may also provide incomplete or ambiguous examples. Moreover, the user can provide other types of descriptions, like data type or value range, about the target schema. We design an explore-and-verify search-based algorithm to efficiently discover all satisfying schema mapping specifications. We implemented a prototype of our schema mapping technique and experimentally evaluated the efficiency of the system in handling traditional PBE schema mapping test cases, as well as our newly-proposed declarative schema mapping test cases. The experiment results show that the declarative queries, which we believe are easier for non-expert user to input, often cost around zero to five seconds more than the traditional PBE queries. This suggests we retain a system efficiency comparable to traditional PBE schema mapping systems.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209900.3209902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209900.3209902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beaver
Schema mapping is used to transform data to a desired schema from data sources with different schemas. Manually writing complete schema mapping specifications requires a deep understanding of the source and target schemas, which can be burdensome for the user. Programming By Example (PBE) schema mapping methods allow the user to describe the schema mapping using data records. However, real data records are still harder to specify compared to other useful insights about the desired schema mapping the user might have. In this project, we develop a new schema mapping technique, Beaver, that enables an interaction model that gives the user more flexibility in describing the desired schema mapping. The end user is not limited to providing exact and complete target schema data examples but may also provide incomplete or ambiguous examples. Moreover, the user can provide other types of descriptions, like data type or value range, about the target schema. We design an explore-and-verify search-based algorithm to efficiently discover all satisfying schema mapping specifications. We implemented a prototype of our schema mapping technique and experimentally evaluated the efficiency of the system in handling traditional PBE schema mapping test cases, as well as our newly-proposed declarative schema mapping test cases. The experiment results show that the declarative queries, which we believe are easier for non-expert user to input, often cost around zero to five seconds more than the traditional PBE queries. This suggests we retain a system efficiency comparable to traditional PBE schema mapping systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信