计算机视觉与向量空间模型在羽毛球战术动作分类中的应用

K. Weeratunga, A. Dharmarathne, K. B. How
{"title":"计算机视觉与向量空间模型在羽毛球战术动作分类中的应用","authors":"K. Weeratunga, A. Dharmarathne, K. B. How","doi":"10.1109/CVPRW.2017.22","DOIUrl":null,"url":null,"abstract":"Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tactical profiling in elite badminton. The proposed approach uses computer vision techniques to automate data gathering from video footage. The image processing algorithm is validated using video footage of the highest level tournaments, including the Olympic Games. The average accuracy of player position detection is 96.03% and 97.09% on the two halves of a badminton court. Next, frequent trajectories of badminton players are extracted and classified according to their tactical relevance. The classification performs at 97.79% accuracy, 97.81% precision, 97.44% recall, and 97.62% F-score. The combination of automated player position detection, frequent trajectory extraction, and the subsequent classification can be used to automatically generate player tactical profiles.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"57 1","pages":"132-138"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton\",\"authors\":\"K. Weeratunga, A. Dharmarathne, K. B. How\",\"doi\":\"10.1109/CVPRW.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tactical profiling in elite badminton. The proposed approach uses computer vision techniques to automate data gathering from video footage. The image processing algorithm is validated using video footage of the highest level tournaments, including the Olympic Games. The average accuracy of player position detection is 96.03% and 97.09% on the two halves of a badminton court. Next, frequent trajectories of badminton players are extracted and classified according to their tactical relevance. The classification performs at 97.79% accuracy, 97.81% precision, 97.44% recall, and 97.62% F-score. The combination of automated player position detection, frequent trajectory extraction, and the subsequent classification can be used to automatically generate player tactical profiles.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"57 1\",\"pages\":\"132-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在体育运动中,表现分析允许评估对手的战术和发展反战术,以获得竞争优势。所提出的工作开发了一种全面的方法来自动化精英羽毛球的战术分析。提出的方法使用计算机视觉技术来自动收集视频片段中的数据。图像处理算法通过使用包括奥运会在内的最高水平比赛的视频片段进行验证。羽毛球场上两半场球员位置检测的平均准确率分别为96.03%和97.09%。其次,对羽毛球运动员的频繁轨迹进行提取,并根据其战术相关性进行分类。分类准确率为97.79%,精密度为97.81%,召回率为97.44%,f值为97.62%。将自动球员位置检测、频繁轨迹提取和随后的分类相结合,可用于自动生成球员战术概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton
Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tactical profiling in elite badminton. The proposed approach uses computer vision techniques to automate data gathering from video footage. The image processing algorithm is validated using video footage of the highest level tournaments, including the Olympic Games. The average accuracy of player position detection is 96.03% and 97.09% on the two halves of a badminton court. Next, frequent trajectories of badminton players are extracted and classified according to their tactical relevance. The classification performs at 97.79% accuracy, 97.81% precision, 97.44% recall, and 97.62% F-score. The combination of automated player position detection, frequent trajectory extraction, and the subsequent classification can be used to automatically generate player tactical profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信