自主数据工厂:用于大规模数据收集的高通量筛选,为药品生产提供信息

T. Pickles, C. Mustoe, Cameron G. Brown, Alastair Florence
{"title":"自主数据工厂:用于大规模数据收集的高通量筛选,为药品生产提供信息","authors":"T. Pickles, C. Mustoe, Cameron G. Brown, Alastair Florence","doi":"10.5920/bjpharm.1128","DOIUrl":null,"url":null,"abstract":"Using small-scale crystallisation to inform downstream processes, we can reduce time and material costs in medicine manufacturing. This work introduces a preliminary workflow for information-rich data collection of crystallisation parameters including solubility, induction time, growth rate, secondary nucleation rate, particle shape and size. Large-scale data collection was achieved for 6 active pharmaceutical ingredients (APIs) in 31 solvents in less than 9 months with the results for aspirin presented here. Highlights include the identification of 24 potential alternative crystallisation solvents for manufacturing aspirin, all of which yield the biorelevant polymorph. Automation of this workflow will enable the use of robotics to further reduce time and material usage when conducting crystallisation experiments for future APIs.","PeriodicalId":9253,"journal":{"name":"British Journal of Pharmacy","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autonomous DataFactory: High-throughput screening for large-scale data collection to inform medicine manufacture\",\"authors\":\"T. Pickles, C. Mustoe, Cameron G. Brown, Alastair Florence\",\"doi\":\"10.5920/bjpharm.1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using small-scale crystallisation to inform downstream processes, we can reduce time and material costs in medicine manufacturing. This work introduces a preliminary workflow for information-rich data collection of crystallisation parameters including solubility, induction time, growth rate, secondary nucleation rate, particle shape and size. Large-scale data collection was achieved for 6 active pharmaceutical ingredients (APIs) in 31 solvents in less than 9 months with the results for aspirin presented here. Highlights include the identification of 24 potential alternative crystallisation solvents for manufacturing aspirin, all of which yield the biorelevant polymorph. Automation of this workflow will enable the use of robotics to further reduce time and material usage when conducting crystallisation experiments for future APIs.\",\"PeriodicalId\":9253,\"journal\":{\"name\":\"British Journal of Pharmacy\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5920/bjpharm.1128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5920/bjpharm.1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用小规模结晶为下游工艺提供信息,我们可以减少药物制造的时间和材料成本。这项工作介绍了一个初步的工作流程,用于收集结晶参数的信息丰富的数据,包括溶解度,诱导时间,生长速率,二次成核速率,颗粒形状和大小。在不到9个月的时间里,在31种溶剂中对6种活性药物成分(api)进行了大规模的数据收集,本文给出了阿司匹林的结果。重点包括鉴定24种潜在的用于制造阿司匹林的替代结晶溶剂,所有这些溶剂都能产生生物相关的多晶型。该工作流程的自动化将使机器人技术能够在为未来的api进行结晶实验时进一步减少时间和材料的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous DataFactory: High-throughput screening for large-scale data collection to inform medicine manufacture
Using small-scale crystallisation to inform downstream processes, we can reduce time and material costs in medicine manufacturing. This work introduces a preliminary workflow for information-rich data collection of crystallisation parameters including solubility, induction time, growth rate, secondary nucleation rate, particle shape and size. Large-scale data collection was achieved for 6 active pharmaceutical ingredients (APIs) in 31 solvents in less than 9 months with the results for aspirin presented here. Highlights include the identification of 24 potential alternative crystallisation solvents for manufacturing aspirin, all of which yield the biorelevant polymorph. Automation of this workflow will enable the use of robotics to further reduce time and material usage when conducting crystallisation experiments for future APIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信