{"title":"基于人工神经网络-遗传算法混合模型的机械化隧道土体与施工参数智能识别(以大不里士地铁2号线为例)","authors":"L. Nikakhtar, S. Zare, Hossein Mirzaei Nasirabad","doi":"10.1080/10286608.2022.2075857","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, the ability of the artificial neural network-genetic algorithm (ANN-GA) to perform back analysis and predict maximum surface settlement in mechanised tunnelling is investigated. The required data of the ANN meta-model was generated using 150 three-dimensional finite-difference simulations. The global sensitivity analysis was performed on 19 parameters, including 17 geotechnical parameters of soil layers and 2 operational parameters of face pressure and grouting pressure. The predicted results using ANN were in good agreement with the numerical simulations so that R = 99% and rRMSE = 1.5% are obtained. Then, back analysis was performed using the ANN-GA hybrid algorithm and the geotechnical data of the monitoring point were updated using the maximum surface settlement monitored at this point. Also, for the geotechnical parameters considered in the design phase, using the same algorithm, the number of operational parameters required for optimal settlement was predicted.","PeriodicalId":50689,"journal":{"name":"Civil Engineering and Environmental Systems","volume":"96 1","pages":"287 - 308"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent identification of soil and operation parameters in mechanised tunnelling by a hybrid model of artificial neural network-genetic algorithm (case study: Tabriz Metro Line 2)\",\"authors\":\"L. Nikakhtar, S. Zare, Hossein Mirzaei Nasirabad\",\"doi\":\"10.1080/10286608.2022.2075857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, the ability of the artificial neural network-genetic algorithm (ANN-GA) to perform back analysis and predict maximum surface settlement in mechanised tunnelling is investigated. The required data of the ANN meta-model was generated using 150 three-dimensional finite-difference simulations. The global sensitivity analysis was performed on 19 parameters, including 17 geotechnical parameters of soil layers and 2 operational parameters of face pressure and grouting pressure. The predicted results using ANN were in good agreement with the numerical simulations so that R = 99% and rRMSE = 1.5% are obtained. Then, back analysis was performed using the ANN-GA hybrid algorithm and the geotechnical data of the monitoring point were updated using the maximum surface settlement monitored at this point. Also, for the geotechnical parameters considered in the design phase, using the same algorithm, the number of operational parameters required for optimal settlement was predicted.\",\"PeriodicalId\":50689,\"journal\":{\"name\":\"Civil Engineering and Environmental Systems\",\"volume\":\"96 1\",\"pages\":\"287 - 308\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering and Environmental Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10286608.2022.2075857\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering and Environmental Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10286608.2022.2075857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Intelligent identification of soil and operation parameters in mechanised tunnelling by a hybrid model of artificial neural network-genetic algorithm (case study: Tabriz Metro Line 2)
ABSTRACT In this article, the ability of the artificial neural network-genetic algorithm (ANN-GA) to perform back analysis and predict maximum surface settlement in mechanised tunnelling is investigated. The required data of the ANN meta-model was generated using 150 three-dimensional finite-difference simulations. The global sensitivity analysis was performed on 19 parameters, including 17 geotechnical parameters of soil layers and 2 operational parameters of face pressure and grouting pressure. The predicted results using ANN were in good agreement with the numerical simulations so that R = 99% and rRMSE = 1.5% are obtained. Then, back analysis was performed using the ANN-GA hybrid algorithm and the geotechnical data of the monitoring point were updated using the maximum surface settlement monitored at this point. Also, for the geotechnical parameters considered in the design phase, using the same algorithm, the number of operational parameters required for optimal settlement was predicted.
期刊介绍:
Civil Engineering and Environmental Systems is devoted to the advancement of systems thinking and systems techniques throughout systems engineering, environmental engineering decision-making, and engineering management. We do this by publishing the practical applications and developments of "hard" and "soft" systems techniques and thinking.
Submissions that allow for better analysis of civil engineering and environmental systems might look at:
-Civil Engineering optimization
-Risk assessment in engineering
-Civil engineering decision analysis
-System identification in engineering
-Civil engineering numerical simulation
-Uncertainty modelling in engineering
-Qualitative modelling of complex engineering systems