{"title":"形状优化框架中求解平稳自由边界问题的新耦合复边界法","authors":"J. F. Rabago","doi":"10.3934/mcrf.2022041","DOIUrl":null,"url":null,"abstract":"We expose here a novel application of the so-called coupled complex boundary method – first put forward by Cheng et al. (2014) to deal with inverse source problems – in the framework of shape optimization for solving the exterior Bernoulli problem, a prototypical model of stationary free boundary problems. The idea of the method is to transform the overdetermined problem to a complex boundary value problem with a complex Robin boundary condition coupling the Dirichlet and Neumann boundary conditions on the free boundary. Then, we optimize the cost function constructed by the imaginary part of the solution in the whole domain in order to identify the free boundary. We also prove the existence of the shape derivative of the complex state with respect to the domain. Afterwards, we compute the shape gradient of the cost functional, and characterize its shape Hessian at the optimal domain under a strong, and then a mild regularity assumption on the domain. We then prove the ill-posedness of the proposed shape problem by showing that the latter expression is compact. Also, we devise an iterative algorithm based on a Sobolev gradient scheme via finite element method to solve the minimization problem. Finally, we illustrate the applicability of the method through several numerical examples, both in two and three spatial dimensions.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems\",\"authors\":\"J. F. Rabago\",\"doi\":\"10.3934/mcrf.2022041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We expose here a novel application of the so-called coupled complex boundary method – first put forward by Cheng et al. (2014) to deal with inverse source problems – in the framework of shape optimization for solving the exterior Bernoulli problem, a prototypical model of stationary free boundary problems. The idea of the method is to transform the overdetermined problem to a complex boundary value problem with a complex Robin boundary condition coupling the Dirichlet and Neumann boundary conditions on the free boundary. Then, we optimize the cost function constructed by the imaginary part of the solution in the whole domain in order to identify the free boundary. We also prove the existence of the shape derivative of the complex state with respect to the domain. Afterwards, we compute the shape gradient of the cost functional, and characterize its shape Hessian at the optimal domain under a strong, and then a mild regularity assumption on the domain. We then prove the ill-posedness of the proposed shape problem by showing that the latter expression is compact. Also, we devise an iterative algorithm based on a Sobolev gradient scheme via finite element method to solve the minimization problem. Finally, we illustrate the applicability of the method through several numerical examples, both in two and three spatial dimensions.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems
We expose here a novel application of the so-called coupled complex boundary method – first put forward by Cheng et al. (2014) to deal with inverse source problems – in the framework of shape optimization for solving the exterior Bernoulli problem, a prototypical model of stationary free boundary problems. The idea of the method is to transform the overdetermined problem to a complex boundary value problem with a complex Robin boundary condition coupling the Dirichlet and Neumann boundary conditions on the free boundary. Then, we optimize the cost function constructed by the imaginary part of the solution in the whole domain in order to identify the free boundary. We also prove the existence of the shape derivative of the complex state with respect to the domain. Afterwards, we compute the shape gradient of the cost functional, and characterize its shape Hessian at the optimal domain under a strong, and then a mild regularity assumption on the domain. We then prove the ill-posedness of the proposed shape problem by showing that the latter expression is compact. Also, we devise an iterative algorithm based on a Sobolev gradient scheme via finite element method to solve the minimization problem. Finally, we illustrate the applicability of the method through several numerical examples, both in two and three spatial dimensions.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.