杂草种子休眠和萌发的环境调控

M. Qaderi
{"title":"杂草种子休眠和萌发的环境调控","authors":"M. Qaderi","doi":"10.3390/seeds2030020","DOIUrl":null,"url":null,"abstract":"Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced dormancy), in which dormancy develops in seeds through some experience after release from the parent plant. Mechanisms of seed dormancy are categorized as embryo dormancy and coat-imposed dormancy. In embryo dormancy, the control of dormancy resides within the embryo itself, and in coat-imposed dormancy, it is maintained by the structures enclosing the embryo. Many factors can influence seed dormancy during development and after dispersal; they can be abiotic, biotic, or a combination of both. Most weeds deposit a large number of seeds in the seed bank, which can be one of two types—transient or persistent. In the transient type, all viable seeds in the soil germinate or die within one year, and there is no carry-over until a new crop is deposited. In the persistent type, at least some seeds survive in the soil for more than one year and there is always some carry-over until a new crop is deposited. Some dormant seeds require after-ripening—changes in dry seeds that cause or improve germination. Nondormant, viable seeds can germinate if they encounter appropriate conditions. In the face of climate change, including global warming, some weeds produce a large proportion of nondormant seeds, which germinate shortly after dispersal, and a smaller, more transient seed bank. Further studies are required to explore this phenomenon.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Environmental Regulation of Weed Seed Dormancy and Germination\",\"authors\":\"M. Qaderi\",\"doi\":\"10.3390/seeds2030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced dormancy), in which dormancy develops in seeds through some experience after release from the parent plant. Mechanisms of seed dormancy are categorized as embryo dormancy and coat-imposed dormancy. In embryo dormancy, the control of dormancy resides within the embryo itself, and in coat-imposed dormancy, it is maintained by the structures enclosing the embryo. Many factors can influence seed dormancy during development and after dispersal; they can be abiotic, biotic, or a combination of both. Most weeds deposit a large number of seeds in the seed bank, which can be one of two types—transient or persistent. In the transient type, all viable seeds in the soil germinate or die within one year, and there is no carry-over until a new crop is deposited. In the persistent type, at least some seeds survive in the soil for more than one year and there is always some carry-over until a new crop is deposited. Some dormant seeds require after-ripening—changes in dry seeds that cause or improve germination. Nondormant, viable seeds can germinate if they encounter appropriate conditions. In the face of climate change, including global warming, some weeds produce a large proportion of nondormant seeds, which germinate shortly after dispersal, and a smaller, more transient seed bank. Further studies are required to explore this phenomenon.\",\"PeriodicalId\":85504,\"journal\":{\"name\":\"Seeds (New York, N.Y.)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seeds (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/seeds2030020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seeds (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/seeds2030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多杂草产生的休眠种子在有利的条件下无法完全发芽。种子休眠有两种类型:一次休眠(先天休眠),即种子从亲本植物中释放后处于休眠状态;二次休眠(诱导休眠),即种子从亲本植物中释放后通过某种经历进入休眠状态。种子休眠机制分为胚休眠和被膜休眠。在胚胎休眠中,休眠的控制存在于胚胎本身,而在被盖休眠中,休眠是由包围胚胎的结构维持的。影响种子发育过程和传播后休眠的因素很多;它们可以是非生物的,也可以是生物的,或者两者兼而有之。大多数杂草在种子库中储存大量种子,种子库可分为两种类型:瞬时种子和持久种子。在瞬时类型中,土壤中所有有活力的种子在一年内发芽或死亡,并且在新作物沉积之前没有结转。在持久型中,至少有一些种子在土壤中存活了一年以上,并且总是有一些种子在新作物沉积之前被保留下来。一些休眠的种子需要在干燥的种子中进行成熟后的变化,以引起或促进发芽。如果遇到适当的条件,非休眠的、有活力的种子可以发芽。面对包括全球变暖在内的气候变化,一些杂草产生了很大比例的非休眠种子,这些种子在传播后不久就发芽了,还有一个更小、更短暂的种子库。需要进一步的研究来探索这一现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Regulation of Weed Seed Dormancy and Germination
Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced dormancy), in which dormancy develops in seeds through some experience after release from the parent plant. Mechanisms of seed dormancy are categorized as embryo dormancy and coat-imposed dormancy. In embryo dormancy, the control of dormancy resides within the embryo itself, and in coat-imposed dormancy, it is maintained by the structures enclosing the embryo. Many factors can influence seed dormancy during development and after dispersal; they can be abiotic, biotic, or a combination of both. Most weeds deposit a large number of seeds in the seed bank, which can be one of two types—transient or persistent. In the transient type, all viable seeds in the soil germinate or die within one year, and there is no carry-over until a new crop is deposited. In the persistent type, at least some seeds survive in the soil for more than one year and there is always some carry-over until a new crop is deposited. Some dormant seeds require after-ripening—changes in dry seeds that cause or improve germination. Nondormant, viable seeds can germinate if they encounter appropriate conditions. In the face of climate change, including global warming, some weeds produce a large proportion of nondormant seeds, which germinate shortly after dispersal, and a smaller, more transient seed bank. Further studies are required to explore this phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信