混合网格网格中心有限体积法的面和单元平均节点梯度法

H. Nishikawa, Jeffery A. White
{"title":"混合网格网格中心有限体积法的面和单元平均节点梯度法","authors":"H. Nishikawa, Jeffery A. White","doi":"10.2514/6.2020-1787","DOIUrl":null,"url":null,"abstract":"In this paper, the averaged nodal-gradient approach previously developed for triangular grids is extended to mixed triangular-quadrilateral grids. It is shown that the faceaveraged approach leads to deteriorated iterative convergence on quadrilateral grids. To develop a convergent solver, we consider cell-averaging instead of face-averaging for quadrilateral cells. We show that the cell-averaged approach leads to a convergent solver and can be efficiently combined with the face-averaged approach on mixed grids. The method is demonstrated for various inviscid and viscous problems from low to high Mach numbers on two-dimensional mixed grids.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face- and Cell-Averaged Nodal-Gradient Approach to Cell-Centered Finite-Volume Method on Mixed Grids\",\"authors\":\"H. Nishikawa, Jeffery A. White\",\"doi\":\"10.2514/6.2020-1787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the averaged nodal-gradient approach previously developed for triangular grids is extended to mixed triangular-quadrilateral grids. It is shown that the faceaveraged approach leads to deteriorated iterative convergence on quadrilateral grids. To develop a convergent solver, we consider cell-averaging instead of face-averaging for quadrilateral cells. We show that the cell-averaged approach leads to a convergent solver and can be efficiently combined with the face-averaged approach on mixed grids. The method is demonstrated for various inviscid and viscous problems from low to high Mach numbers on two-dimensional mixed grids.\",\"PeriodicalId\":93413,\"journal\":{\"name\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-1787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-1787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将三角网格的平均节点梯度法推广到混合三角四边形网格。结果表明,面平均法在四边形网格上的迭代收敛性变差。为了开发一个收敛的求解器,我们考虑对四边形单元进行细胞平均而不是面平均。我们证明了单元平均方法导致了一个收敛的求解器,并且可以有效地与混合网格上的面平均方法相结合。该方法在二维混合网格上对低马赫数到高马赫数的各种无粘和粘性问题进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face- and Cell-Averaged Nodal-Gradient Approach to Cell-Centered Finite-Volume Method on Mixed Grids
In this paper, the averaged nodal-gradient approach previously developed for triangular grids is extended to mixed triangular-quadrilateral grids. It is shown that the faceaveraged approach leads to deteriorated iterative convergence on quadrilateral grids. To develop a convergent solver, we consider cell-averaging instead of face-averaging for quadrilateral cells. We show that the cell-averaged approach leads to a convergent solver and can be efficiently combined with the face-averaged approach on mixed grids. The method is demonstrated for various inviscid and viscous problems from low to high Mach numbers on two-dimensional mixed grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信