{"title":"密度功率降权与鲁棒推理:一些新策略","authors":"Saptarshi Roy, K. Chakraborty, S. Bhadra, A. Basu","doi":"10.3844/JMSSP.2019.333.353","DOIUrl":null,"url":null,"abstract":"Preserving the robustness of the procedure has, at the present time, become almost a default requirement for statistical data analysis. Since efficiency at the model and robustness under misspecification of the model are often in conflict, it is important to choose such inference procedures which provide the best compromise between these two concepts. Some minimum Bregman divergence estimators and related tests of hypothesis seem to be able to do well in this respect, with the procedures based on the density power divergence providing the existing standard. In this paper we propose a new family of Bregman divergences which is a superfamily encompassing the density power divergence. This paper describes the inference procedures resulting from this new family of divergences, and makes a strong case for the utility of this divergence family in statistical inference.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"67 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density Power Downweighting and Robust Inference: Some New Strategies\",\"authors\":\"Saptarshi Roy, K. Chakraborty, S. Bhadra, A. Basu\",\"doi\":\"10.3844/JMSSP.2019.333.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preserving the robustness of the procedure has, at the present time, become almost a default requirement for statistical data analysis. Since efficiency at the model and robustness under misspecification of the model are often in conflict, it is important to choose such inference procedures which provide the best compromise between these two concepts. Some minimum Bregman divergence estimators and related tests of hypothesis seem to be able to do well in this respect, with the procedures based on the density power divergence providing the existing standard. In this paper we propose a new family of Bregman divergences which is a superfamily encompassing the density power divergence. This paper describes the inference procedures resulting from this new family of divergences, and makes a strong case for the utility of this divergence family in statistical inference.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2019.333.353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.333.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Density Power Downweighting and Robust Inference: Some New Strategies
Preserving the robustness of the procedure has, at the present time, become almost a default requirement for statistical data analysis. Since efficiency at the model and robustness under misspecification of the model are often in conflict, it is important to choose such inference procedures which provide the best compromise between these two concepts. Some minimum Bregman divergence estimators and related tests of hypothesis seem to be able to do well in this respect, with the procedures based on the density power divergence providing the existing standard. In this paper we propose a new family of Bregman divergences which is a superfamily encompassing the density power divergence. This paper describes the inference procedures resulting from this new family of divergences, and makes a strong case for the utility of this divergence family in statistical inference.