{"title":"用描述函数模型进行计算机辅助非线性控制系统分析的系统方法","authors":"A. S. Telang, P. Bedekar","doi":"10.11648/J.MLR.20190401.13","DOIUrl":null,"url":null,"abstract":"In recent years, control system problems involving non linearities are important concerns in the framework of automation industries. Actuators with non-linear behavior such as saturation, dead zone, relay, backlash etc. may be responsible for poor control performance in the system. The analysis of these non-linearities is an important task for a control system engineer. Moreover the methods of analyzing these non-linearities are time consuming and non-generic. This paper presents simple and systematic approach for analyzing such kind of non-linearities using user-friendly MATLAB tool “Nonlintool”. This tool saves the time as well as provides visual effects for analysis. Main contribution of this paper is to show how user friendly MATLAB tool “Nonlintool” can extensively be used for quicker and wider interpretation of results based on describing function models. The novelty of this paper lies in analyzing all kinds of non-linearities along with their impact on stability of the nonlinear system. The performance has been evaluated for varying conditions of magnitude and gain of the system as well as on various transfer function models. The results of stability analysis, for which only standard transfer function model is considered, are presented here.","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Approach Towards Computer Aided Non-Linear Control System Analysis Using Describing Function Models\",\"authors\":\"A. S. Telang, P. Bedekar\",\"doi\":\"10.11648/J.MLR.20190401.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, control system problems involving non linearities are important concerns in the framework of automation industries. Actuators with non-linear behavior such as saturation, dead zone, relay, backlash etc. may be responsible for poor control performance in the system. The analysis of these non-linearities is an important task for a control system engineer. Moreover the methods of analyzing these non-linearities are time consuming and non-generic. This paper presents simple and systematic approach for analyzing such kind of non-linearities using user-friendly MATLAB tool “Nonlintool”. This tool saves the time as well as provides visual effects for analysis. Main contribution of this paper is to show how user friendly MATLAB tool “Nonlintool” can extensively be used for quicker and wider interpretation of results based on describing function models. The novelty of this paper lies in analyzing all kinds of non-linearities along with their impact on stability of the nonlinear system. The performance has been evaluated for varying conditions of magnitude and gain of the system as well as on various transfer function models. The results of stability analysis, for which only standard transfer function model is considered, are presented here.\",\"PeriodicalId\":75238,\"journal\":{\"name\":\"Transactions on machine learning research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.MLR.20190401.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MLR.20190401.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic Approach Towards Computer Aided Non-Linear Control System Analysis Using Describing Function Models
In recent years, control system problems involving non linearities are important concerns in the framework of automation industries. Actuators with non-linear behavior such as saturation, dead zone, relay, backlash etc. may be responsible for poor control performance in the system. The analysis of these non-linearities is an important task for a control system engineer. Moreover the methods of analyzing these non-linearities are time consuming and non-generic. This paper presents simple and systematic approach for analyzing such kind of non-linearities using user-friendly MATLAB tool “Nonlintool”. This tool saves the time as well as provides visual effects for analysis. Main contribution of this paper is to show how user friendly MATLAB tool “Nonlintool” can extensively be used for quicker and wider interpretation of results based on describing function models. The novelty of this paper lies in analyzing all kinds of non-linearities along with their impact on stability of the nonlinear system. The performance has been evaluated for varying conditions of magnitude and gain of the system as well as on various transfer function models. The results of stability analysis, for which only standard transfer function model is considered, are presented here.