Frechet空间中的Caputo-Fabrizio分数阶微分方程

Q4 Mathematics
S. Abbas, M. Benchohra, Hafsa Gorine
{"title":"Frechet空间中的Caputo-Fabrizio分数阶微分方程","authors":"S. Abbas, M. Benchohra, Hafsa Gorine","doi":"10.31926/but.mif.2020.13.62.2.1","DOIUrl":null,"url":null,"abstract":"This paper deals with some existence and uniqueness of solutions for a class of functional Caputo-Fabrizio fractional differential equations. Some applications are made of a generalization of the classical Darbo fixed point theorem for Frechet spaces associate with the concept of measure of noncompactness. The last section illustrates our results with some examples.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Caputo-Fabrizio fractional differential equations in Frechet spaces\",\"authors\":\"S. Abbas, M. Benchohra, Hafsa Gorine\",\"doi\":\"10.31926/but.mif.2020.13.62.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with some existence and uniqueness of solutions for a class of functional Caputo-Fabrizio fractional differential equations. Some applications are made of a generalization of the classical Darbo fixed point theorem for Frechet spaces associate with the concept of measure of noncompactness. The last section illustrates our results with some examples.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2020.13.62.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类泛函Caputo-Fabrizio分数阶微分方程解的存在唯一性。将经典Darbo不动点定理推广到Frechet空间,并结合非紧性测度的概念,给出了一些应用。最后一节用一些示例说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caputo-Fabrizio fractional differential equations in Frechet spaces
This paper deals with some existence and uniqueness of solutions for a class of functional Caputo-Fabrizio fractional differential equations. Some applications are made of a generalization of the classical Darbo fixed point theorem for Frechet spaces associate with the concept of measure of noncompactness. The last section illustrates our results with some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信