{"title":"随机矩阵理论和l函数的矩的矩","authors":"J. Andrade, C. G. Best","doi":"10.1142/s2010326323500028","DOIUrl":null,"url":null,"abstract":"In this paper, we give an analytic proof of the asymptotic behavior of the moments of moments of the characteristic polynomials of random symplectic and orthogonal matrices. We therefore obtain alternate, integral expressions for the leading order coefficients previously found by Assiotis, Bailey and Keating. We also discuss the conjectures of Bailey and Keating for the corresponding moments of moments of [Formula: see text]-functions with symplectic and orthogonal symmetry. Specifically, we show that these conjectures follow from the shifted moments conjecture of Conrey, Farmer, Keating, Rubinstein and Snaith.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random matrix theory and moments of moments of L-functions\",\"authors\":\"J. Andrade, C. G. Best\",\"doi\":\"10.1142/s2010326323500028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give an analytic proof of the asymptotic behavior of the moments of moments of the characteristic polynomials of random symplectic and orthogonal matrices. We therefore obtain alternate, integral expressions for the leading order coefficients previously found by Assiotis, Bailey and Keating. We also discuss the conjectures of Bailey and Keating for the corresponding moments of moments of [Formula: see text]-functions with symplectic and orthogonal symmetry. Specifically, we show that these conjectures follow from the shifted moments conjecture of Conrey, Farmer, Keating, Rubinstein and Snaith.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326323500028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random matrix theory and moments of moments of L-functions
In this paper, we give an analytic proof of the asymptotic behavior of the moments of moments of the characteristic polynomials of random symplectic and orthogonal matrices. We therefore obtain alternate, integral expressions for the leading order coefficients previously found by Assiotis, Bailey and Keating. We also discuss the conjectures of Bailey and Keating for the corresponding moments of moments of [Formula: see text]-functions with symplectic and orthogonal symmetry. Specifically, we show that these conjectures follow from the shifted moments conjecture of Conrey, Farmer, Keating, Rubinstein and Snaith.