{"title":"从Freeman链码在四个方向上构造四叉树的扩展算法","authors":"Andrej Nerat, D. Strnad, Eva Zupancic, B. Žalik","doi":"10.5566/ias.2095","DOIUrl":null,"url":null,"abstract":"This paper introduces improvements to the algorithm that was proposed in 2001 by Chen and Chen. The algorithm constructs a quadtree directly from Freeman chain code in four directions. We have improved the algorithm in two ways: Firstly, a time efficient solution using the space filling Z-order curve is proposed for a self-intersection case that was not considered by Chen and Chen. Secondly, the algorithm is expanded to handle geometric objects containing holes. The computational efficiency of the extended algorithm was confirmed by the experiments.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"47 1","pages":"227-235"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended algorithm to construct a quadtree from Freeman chain code in four directions\",\"authors\":\"Andrej Nerat, D. Strnad, Eva Zupancic, B. Žalik\",\"doi\":\"10.5566/ias.2095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces improvements to the algorithm that was proposed in 2001 by Chen and Chen. The algorithm constructs a quadtree directly from Freeman chain code in four directions. We have improved the algorithm in two ways: Firstly, a time efficient solution using the space filling Z-order curve is proposed for a self-intersection case that was not considered by Chen and Chen. Secondly, the algorithm is expanded to handle geometric objects containing holes. The computational efficiency of the extended algorithm was confirmed by the experiments.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"47 1\",\"pages\":\"227-235\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/ias.2095\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/ias.2095","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Extended algorithm to construct a quadtree from Freeman chain code in four directions
This paper introduces improvements to the algorithm that was proposed in 2001 by Chen and Chen. The algorithm constructs a quadtree directly from Freeman chain code in four directions. We have improved the algorithm in two ways: Firstly, a time efficient solution using the space filling Z-order curve is proposed for a self-intersection case that was not considered by Chen and Chen. Secondly, the algorithm is expanded to handle geometric objects containing holes. The computational efficiency of the extended algorithm was confirmed by the experiments.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.