基于参数模型检验的运行时服务质量评估可靠性研究

Guoxin Su, David S. Rosenblum, Giordano Tamburrelli
{"title":"基于参数模型检验的运行时服务质量评估可靠性研究","authors":"Guoxin Su, David S. Rosenblum, Giordano Tamburrelli","doi":"10.1145/2884781.2884814","DOIUrl":null,"url":null,"abstract":"Run-time Quality-of-Service (QoS) assurance is crucial for business-critical systems. Complex behavioral performance metrics (PMs) are useful but often difficult to monitor or measure. Probabilistic model checking, especially paramet- ric model checking, can support the computation of aggre- gate functions for a broad range of those PMs. In practice, those PMs may be defined with parameters determined by run-time data. In this paper, we address the reliability of QoS evaluation using parametric model checking. Due to the imprecision with the instantiation of parameters, an evaluation outcome may mislead the judgment about requirement violations. Based on a general assumption of run-time data distribution, we present a novel framework that contains light-weight statistical inference methods to analyze the re- liability of a parametric model checking output with respect to an intuitive criterion. We also present case studies in which we test the stability and accuracy of our inference methods and describe an application of our framework to a cloud server management problem.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"58 1","pages":"73-84"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Reliability of Run-Time Quality-of-Service Evaluation Using Parametric Model Checking\",\"authors\":\"Guoxin Su, David S. Rosenblum, Giordano Tamburrelli\",\"doi\":\"10.1145/2884781.2884814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Run-time Quality-of-Service (QoS) assurance is crucial for business-critical systems. Complex behavioral performance metrics (PMs) are useful but often difficult to monitor or measure. Probabilistic model checking, especially paramet- ric model checking, can support the computation of aggre- gate functions for a broad range of those PMs. In practice, those PMs may be defined with parameters determined by run-time data. In this paper, we address the reliability of QoS evaluation using parametric model checking. Due to the imprecision with the instantiation of parameters, an evaluation outcome may mislead the judgment about requirement violations. Based on a general assumption of run-time data distribution, we present a novel framework that contains light-weight statistical inference methods to analyze the re- liability of a parametric model checking output with respect to an intuitive criterion. We also present case studies in which we test the stability and accuracy of our inference methods and describe an application of our framework to a cloud server management problem.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"58 1\",\"pages\":\"73-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

运行时服务质量(QoS)保证对于业务关键型系统至关重要。复杂的行为性能度量(pm)是有用的,但通常难以监控或度量。概率模型验算,特别是参数模型验算,可以支持大范围的聚门函数的计算。在实践中,这些pm可以用由运行时数据确定的参数来定义。在本文中,我们使用参数模型检查来解决QoS评估的可靠性问题。由于参数实例化的不精确性,评估结果可能会误导对需求违反的判断。基于运行时数据分布的一般假设,我们提出了一个包含轻量级统计推理方法的新框架,以根据直观准则分析参数模型检查输出的可靠性。我们还介绍了一些案例研究,在这些案例中,我们测试了我们推理方法的稳定性和准确性,并描述了我们的框架在云服务器管理问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability of Run-Time Quality-of-Service Evaluation Using Parametric Model Checking
Run-time Quality-of-Service (QoS) assurance is crucial for business-critical systems. Complex behavioral performance metrics (PMs) are useful but often difficult to monitor or measure. Probabilistic model checking, especially paramet- ric model checking, can support the computation of aggre- gate functions for a broad range of those PMs. In practice, those PMs may be defined with parameters determined by run-time data. In this paper, we address the reliability of QoS evaluation using parametric model checking. Due to the imprecision with the instantiation of parameters, an evaluation outcome may mislead the judgment about requirement violations. Based on a general assumption of run-time data distribution, we present a novel framework that contains light-weight statistical inference methods to analyze the re- liability of a parametric model checking output with respect to an intuitive criterion. We also present case studies in which we test the stability and accuracy of our inference methods and describe an application of our framework to a cloud server management problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信