温湿相关磁电弹性空心球的湿热蠕变及应力重分布分析

M. Saadatfar
{"title":"温湿相关磁电弹性空心球的湿热蠕变及应力重分布分析","authors":"M. Saadatfar","doi":"10.22034/JSM.2019.582849.1371","DOIUrl":null,"url":null,"abstract":"In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differential equation in which there are the creep strains. At the first step, discounting creep strains in the mentioned equation, an analytical solution for the hygro-thermo-magneto-electro-elastic behavior is achieved at the initial state. After that, the creep stress rates can be achieved by keeping only the creep strains in the differential equation for the steady-state condition. The analysis is done by applying the Prandtl-Reuss equations as well as Norton’s law in creep behavior modeling. Finally, the history of stresses, displacement as well as magnetic and potential field, at any time, is achieved using an iterative method. Results show that the increase in tensile hoop stress resulted from creep progress must be considered in design progress. Also, the effect of hygrothermal loading is more extensive after creep evolution.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"43 1","pages":"57-71"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere\",\"authors\":\"M. Saadatfar\",\"doi\":\"10.22034/JSM.2019.582849.1371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differential equation in which there are the creep strains. At the first step, discounting creep strains in the mentioned equation, an analytical solution for the hygro-thermo-magneto-electro-elastic behavior is achieved at the initial state. After that, the creep stress rates can be achieved by keeping only the creep strains in the differential equation for the steady-state condition. The analysis is done by applying the Prandtl-Reuss equations as well as Norton’s law in creep behavior modeling. Finally, the history of stresses, displacement as well as magnetic and potential field, at any time, is achieved using an iterative method. Results show that the increase in tensile hoop stress resulted from creep progress must be considered in design progress. Also, the effect of hygrothermal loading is more extensive after creep evolution.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"43 1\",\"pages\":\"57-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2019.582849.1371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.582849.1371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对磁电弹性(MEE)厚壁球在机械、电、磁、均匀温度梯度和水分浓度梯度作用下的应力重分布进行了时变分析。将MEE的本构方程与应力-应变关系和应变-位移关系结合起来,得到了包含蠕变应变的微分方程。首先,对上述方程中的蠕变应变进行折现,得到了初始状态下的湿-热-磁-电弹性行为的解析解。之后,在稳态条件下,微分方程中只保留蠕变应变即可得到蠕变应力率。分析采用了Prandtl-Reuss方程和诺顿定律在蠕变行为建模中。最后,利用迭代法得到任意时刻的应力、位移、磁场和势场的变化历史。结果表明,在设计过程中应考虑蠕变过程引起的环向拉应力的增大。在蠕变演化后,湿热载荷的影响更为广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere
In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differential equation in which there are the creep strains. At the first step, discounting creep strains in the mentioned equation, an analytical solution for the hygro-thermo-magneto-electro-elastic behavior is achieved at the initial state. After that, the creep stress rates can be achieved by keeping only the creep strains in the differential equation for the steady-state condition. The analysis is done by applying the Prandtl-Reuss equations as well as Norton’s law in creep behavior modeling. Finally, the history of stresses, displacement as well as magnetic and potential field, at any time, is achieved using an iterative method. Results show that the increase in tensile hoop stress resulted from creep progress must be considered in design progress. Also, the effect of hygrothermal loading is more extensive after creep evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信