{"title":"使用盲EC机制来模拟双耳和时间语音处理之间的相互作用","authors":"Saskia Rӧttges, C. Hauth, J. Rennies, T. Brand","doi":"10.1051/aacus/2022009","DOIUrl":null,"url":null,"abstract":"We reanalyzed a study that investigated binaural and temporal integration of speech reflections with different amplitudes, delays, and interaural phase differences. We used a blind binaural speech intelligibility model (bBSIM), applying an equalization-cancellation process for modeling binaural release from masking. bBSIM is blind, as it requires only the mixed binaural speech and noise signals and no auxiliary information about the listening conditions. bBSIM was combined with two non-blind back-ends: The speech intelligibility index (SII) and the speech transmission index (STI) resulting in hybrid-models. Furthermore, bBSIM was combined with the non-intrusive short-time objective intelligibility (NI-STOI) resulting in a fully blind model. The fully non-blind reference model used in the previous study achieved the best prediction accuracy (R2 = 0.91 and RMSE = 1 dB). The fully blind model yielded a coefficient of determination (R2 = 0.87) similar to that of the reference model but also the highest root mean square error of the models tested in this study (RMSE = 4.4 dB). By adjusting the binaural processing errors of bBSIM as done in the reference model, the RMSE could be decreased to 1.9 dB. Furthermore, in this study, the dynamic range of the SII had to be adjusted to predict the low SRTs of the speech material used.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing\",\"authors\":\"Saskia Rӧttges, C. Hauth, J. Rennies, T. Brand\",\"doi\":\"10.1051/aacus/2022009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reanalyzed a study that investigated binaural and temporal integration of speech reflections with different amplitudes, delays, and interaural phase differences. We used a blind binaural speech intelligibility model (bBSIM), applying an equalization-cancellation process for modeling binaural release from masking. bBSIM is blind, as it requires only the mixed binaural speech and noise signals and no auxiliary information about the listening conditions. bBSIM was combined with two non-blind back-ends: The speech intelligibility index (SII) and the speech transmission index (STI) resulting in hybrid-models. Furthermore, bBSIM was combined with the non-intrusive short-time objective intelligibility (NI-STOI) resulting in a fully blind model. The fully non-blind reference model used in the previous study achieved the best prediction accuracy (R2 = 0.91 and RMSE = 1 dB). The fully blind model yielded a coefficient of determination (R2 = 0.87) similar to that of the reference model but also the highest root mean square error of the models tested in this study (RMSE = 4.4 dB). By adjusting the binaural processing errors of bBSIM as done in the reference model, the RMSE could be decreased to 1.9 dB. Furthermore, in this study, the dynamic range of the SII had to be adjusted to predict the low SRTs of the speech material used.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022009\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022009","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing
We reanalyzed a study that investigated binaural and temporal integration of speech reflections with different amplitudes, delays, and interaural phase differences. We used a blind binaural speech intelligibility model (bBSIM), applying an equalization-cancellation process for modeling binaural release from masking. bBSIM is blind, as it requires only the mixed binaural speech and noise signals and no auxiliary information about the listening conditions. bBSIM was combined with two non-blind back-ends: The speech intelligibility index (SII) and the speech transmission index (STI) resulting in hybrid-models. Furthermore, bBSIM was combined with the non-intrusive short-time objective intelligibility (NI-STOI) resulting in a fully blind model. The fully non-blind reference model used in the previous study achieved the best prediction accuracy (R2 = 0.91 and RMSE = 1 dB). The fully blind model yielded a coefficient of determination (R2 = 0.87) similar to that of the reference model but also the highest root mean square error of the models tested in this study (RMSE = 4.4 dB). By adjusting the binaural processing errors of bBSIM as done in the reference model, the RMSE could be decreased to 1.9 dB. Furthermore, in this study, the dynamic range of the SII had to be adjusted to predict the low SRTs of the speech material used.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.