SUN3D:基于SfM和目标标签的大空间重构数据库

Jianxiong Xiao, Andrew Owens, A. Torralba
{"title":"SUN3D:基于SfM和目标标签的大空间重构数据库","authors":"Jianxiong Xiao, Andrew Owens, A. Torralba","doi":"10.1109/ICCV.2013.458","DOIUrl":null,"url":null,"abstract":"Existing scene understanding datasets contain only a limited set of views of a place, and they lack representations of complete 3D spaces. In this paper, we introduce SUN3D, a large-scale RGB-D video database with camera pose and object labels, capturing the full 3D extent of many places. The tasks that go into constructing such a dataset are difficult in isolation -- hand-labeling videos is painstaking, and structure from motion (SfM) is unreliable for large spaces. But if we combine them together, we make the dataset construction task much easier. First, we introduce an intuitive labeling tool that uses a partial reconstruction to propagate labels from one frame to another. Then we use the object labels to fix errors in the reconstruction. For this, we introduce a generalization of bundle adjustment that incorporates object-to-object correspondences. This algorithm works by constraining points for the same object from different frames to lie inside a fixed-size bounding box, parameterized by its rotation and translation. The SUN3D database, the source code for the generalized bundle adjustment, and the web-based 3D annotation tool are all available at http://sun3d.cs.princeton.edu.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"162 1","pages":"1625-1632"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"684","resultStr":"{\"title\":\"SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels\",\"authors\":\"Jianxiong Xiao, Andrew Owens, A. Torralba\",\"doi\":\"10.1109/ICCV.2013.458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing scene understanding datasets contain only a limited set of views of a place, and they lack representations of complete 3D spaces. In this paper, we introduce SUN3D, a large-scale RGB-D video database with camera pose and object labels, capturing the full 3D extent of many places. The tasks that go into constructing such a dataset are difficult in isolation -- hand-labeling videos is painstaking, and structure from motion (SfM) is unreliable for large spaces. But if we combine them together, we make the dataset construction task much easier. First, we introduce an intuitive labeling tool that uses a partial reconstruction to propagate labels from one frame to another. Then we use the object labels to fix errors in the reconstruction. For this, we introduce a generalization of bundle adjustment that incorporates object-to-object correspondences. This algorithm works by constraining points for the same object from different frames to lie inside a fixed-size bounding box, parameterized by its rotation and translation. The SUN3D database, the source code for the generalized bundle adjustment, and the web-based 3D annotation tool are all available at http://sun3d.cs.princeton.edu.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"162 1\",\"pages\":\"1625-1632\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"684\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 684

摘要

现有的场景理解数据集只包含一个地方的有限视图集,而且它们缺乏完整的3D空间的表示。在本文中,我们介绍了SUN3D,一个大规模的RGB-D视频数据库,具有相机姿态和物体标签,捕获了许多地方的全三维范围。构建这样一个数据集的任务是困难的——手工标记视频是艰苦的,而运动结构(SfM)对于大空间是不可靠的。但是如果我们把它们结合在一起,我们就会使数据集构建任务变得容易得多。首先,我们引入了一个直观的标记工具,该工具使用部分重建将标签从一帧传播到另一帧。然后,我们使用对象标签来修复重建中的错误。为此,我们引入了包含对象对对象对应的束调整的泛化。该算法的工作原理是将来自不同帧的同一对象的点约束在固定大小的边界框内,通过其旋转和平移参数化。SUN3D数据库、广义束调整的源代码和基于web的3D注释工具都可以在http://sun3d.cs.princeton.edu上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels
Existing scene understanding datasets contain only a limited set of views of a place, and they lack representations of complete 3D spaces. In this paper, we introduce SUN3D, a large-scale RGB-D video database with camera pose and object labels, capturing the full 3D extent of many places. The tasks that go into constructing such a dataset are difficult in isolation -- hand-labeling videos is painstaking, and structure from motion (SfM) is unreliable for large spaces. But if we combine them together, we make the dataset construction task much easier. First, we introduce an intuitive labeling tool that uses a partial reconstruction to propagate labels from one frame to another. Then we use the object labels to fix errors in the reconstruction. For this, we introduce a generalization of bundle adjustment that incorporates object-to-object correspondences. This algorithm works by constraining points for the same object from different frames to lie inside a fixed-size bounding box, parameterized by its rotation and translation. The SUN3D database, the source code for the generalized bundle adjustment, and the web-based 3D annotation tool are all available at http://sun3d.cs.princeton.edu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信