圆域上拟调和函数的一类非退化Carleman型边值问题的解

IF 0.4 Q4 MATHEMATICS
K. .. Rasulov, T. I. Mikhalyova
{"title":"圆域上拟调和函数的一类非退化Carleman型边值问题的解","authors":"K. .. Rasulov, T. I. Mikhalyova","doi":"10.18500/1816-9791-2022-22-3-307-314","DOIUrl":null,"url":null,"abstract":". This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.","PeriodicalId":42789,"journal":{"name":"Izvestiya of Saratov University Mathematics Mechanics Informatics","volume":"37 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains\",\"authors\":\"K. .. Rasulov, T. I. Mikhalyova\",\"doi\":\"10.18500/1816-9791-2022-22-3-307-314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.\",\"PeriodicalId\":42789,\"journal\":{\"name\":\"Izvestiya of Saratov University Mathematics Mechanics Informatics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya of Saratov University Mathematics Mechanics Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/1816-9791-2022-22-3-307-314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya of Saratov University Mathematics Mechanics Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/1816-9791-2022-22-3-307-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 研究一类拟调和函数的Carleman型边值问题。边值问题是复变解析函数的Carleman型微分问题的一个非正式模型。本文提出了一种在圆域上求解所考虑问题的复解析方法,从而可以建立其解在轮廓小变化时的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains
. This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
35
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信