图的代数连通性的几个新下界

IF 0.4 4区 数学 Q4 MATHEMATICS
Zhen Lin, Rong Zhang, Juan Wang
{"title":"图的代数连通性的几个新下界","authors":"Zhen Lin, Rong Zhang, Juan Wang","doi":"10.47443/cm.2023.016","DOIUrl":null,"url":null,"abstract":"The second-smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity of G , which is one of the most-studied parameters in spectral graph theory and network science. In this paper, we obtain some new lower bounds of the algebraic connectivity by rank-one perturbation matrix and compare them with known results.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Lower Bounds on the Algebraic Connectivity of Graphs\",\"authors\":\"Zhen Lin, Rong Zhang, Juan Wang\",\"doi\":\"10.47443/cm.2023.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second-smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity of G , which is one of the most-studied parameters in spectral graph theory and network science. In this paper, we obtain some new lower bounds of the algebraic connectivity by rank-one perturbation matrix and compare them with known results.\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2023.016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2023.016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的拉普拉斯矩阵的第二小特征值称为G的代数连通性,是谱图理论和网络科学中研究最多的参数之一。本文利用秩一扰动矩阵给出了代数连通性的一些新的下界,并与已知结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some New Lower Bounds on the Algebraic Connectivity of Graphs
The second-smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity of G , which is one of the most-studied parameters in spectral graph theory and network science. In this paper, we obtain some new lower bounds of the algebraic connectivity by rank-one perturbation matrix and compare them with known results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信