广义矩阵代数上的σ-导数

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Jabeen, M. Ashraf, Musheer Ahmad
{"title":"广义矩阵代数上的σ-导数","authors":"A. Jabeen, M. Ashraf, Musheer Ahmad","doi":"10.2478/auom-2020-0022","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝒭 be a commutative ring with unity, 𝒜, 𝒝 be 𝒭-algebras, 𝒨 be (𝒜, 𝒝)-bimodule and 𝒩 be (𝒝, 𝒜)-bimodule. The 𝒭-algebra 𝒢 = 𝒢(𝒜, 𝒨, 𝒩, 𝒝) is a generalized matrix algebra defined by the Morita context (𝒜, 𝒝, 𝒨, 𝒩, ξ𝒨𝒩, Ω𝒩𝒨). In this article, we study Jordan σ-derivations on generalized matrix algebras.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"160 1","pages":"115 - 135"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"σ-derivations on generalized matrix algebras\",\"authors\":\"A. Jabeen, M. Ashraf, Musheer Ahmad\",\"doi\":\"10.2478/auom-2020-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝒭 be a commutative ring with unity, 𝒜, 𝒝 be 𝒭-algebras, 𝒨 be (𝒜, 𝒝)-bimodule and 𝒩 be (𝒝, 𝒜)-bimodule. The 𝒭-algebra 𝒢 = 𝒢(𝒜, 𝒨, 𝒩, 𝒝) is a generalized matrix algebra defined by the Morita context (𝒜, 𝒝, 𝒨, 𝒩, ξ𝒨𝒩, Ω𝒩𝒨). In this article, we study Jordan σ-derivations on generalized matrix algebras.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"160 1\",\"pages\":\"115 - 135\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设𝒭是一个具有单位的交换环,其值为:,𝒝be𝒭-algebras,𝒨be (,𝒝)-双模和 be(𝒝,)-双模。的𝒭-algebra𝒢=𝒢(𝒜、𝒨𝒩,𝒝)是一个广义矩阵代数盛田定义的上下文(𝒜、𝒝𝒨,𝒩,ξ𝒨𝒩,Ω𝒩𝒨)。本文研究了广义矩阵代数上的Jordan σ-导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
σ-derivations on generalized matrix algebras
Abstract Let 𝒭 be a commutative ring with unity, 𝒜, 𝒝 be 𝒭-algebras, 𝒨 be (𝒜, 𝒝)-bimodule and 𝒩 be (𝒝, 𝒜)-bimodule. The 𝒭-algebra 𝒢 = 𝒢(𝒜, 𝒨, 𝒩, 𝒝) is a generalized matrix algebra defined by the Morita context (𝒜, 𝒝, 𝒨, 𝒩, ξ𝒨𝒩, Ω𝒩𝒨). In this article, we study Jordan σ-derivations on generalized matrix algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信