{"title":"用玉米炉转化木质纤维素生产生物乙醇","authors":"Numchok Manmai, Yuwalee Unpaprom, Ramaeshprabu Ramaraj, Keng-Tung Wu","doi":"10.54279/mijeec.v3i1.245155","DOIUrl":null,"url":null,"abstract":"The use of fossil fuels, as well as the environmental issues associated with their burning, has pushed for the development of clean, renewable energy sources. Biofuels made from lignocellulosic biomass are considered a carbon-neutral and sustainable method. As the demand for non-petroleum fuels grows, more attention will be placed on developing a cost-competitive liquid transportation biofuel like ethanol. This study was conducted to produce bioethanol utilizing the SHF (separate hydrolysis and fermentation) technique from corn stove lignocellulose. Pretreatment with sodium hydroxide at various concentrations was also studied. The influence of enzymatic saccharification, fermentation time, and substrate concentration on sugar yield and, eventually, ethanol production was investigated. Fermentation was carried out by using the enzymatically saccharified hydrolysate and monoculture of Saccharomyces cerevisiae. The results reveal that pretreatment with 2% NaOH followed by 48 hours of hydrolysis produced the maximum bioethanol production (30.21 ±0.13 g/L). This study findings indicated that alkali-pretreated corn stove might be used as a feedstock for bioethanol production, reducing reliance on fossil fuels.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transformation of lignocellulose from corn stove for bioethanol production\",\"authors\":\"Numchok Manmai, Yuwalee Unpaprom, Ramaeshprabu Ramaraj, Keng-Tung Wu\",\"doi\":\"10.54279/mijeec.v3i1.245155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of fossil fuels, as well as the environmental issues associated with their burning, has pushed for the development of clean, renewable energy sources. Biofuels made from lignocellulosic biomass are considered a carbon-neutral and sustainable method. As the demand for non-petroleum fuels grows, more attention will be placed on developing a cost-competitive liquid transportation biofuel like ethanol. This study was conducted to produce bioethanol utilizing the SHF (separate hydrolysis and fermentation) technique from corn stove lignocellulose. Pretreatment with sodium hydroxide at various concentrations was also studied. The influence of enzymatic saccharification, fermentation time, and substrate concentration on sugar yield and, eventually, ethanol production was investigated. Fermentation was carried out by using the enzymatically saccharified hydrolysate and monoculture of Saccharomyces cerevisiae. The results reveal that pretreatment with 2% NaOH followed by 48 hours of hydrolysis produced the maximum bioethanol production (30.21 ±0.13 g/L). This study findings indicated that alkali-pretreated corn stove might be used as a feedstock for bioethanol production, reducing reliance on fossil fuels.\",\"PeriodicalId\":18176,\"journal\":{\"name\":\"Maejo International Journal of Energy and Environmental Communication\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maejo International Journal of Energy and Environmental Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54279/mijeec.v3i1.245155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v3i1.245155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transformation of lignocellulose from corn stove for bioethanol production
The use of fossil fuels, as well as the environmental issues associated with their burning, has pushed for the development of clean, renewable energy sources. Biofuels made from lignocellulosic biomass are considered a carbon-neutral and sustainable method. As the demand for non-petroleum fuels grows, more attention will be placed on developing a cost-competitive liquid transportation biofuel like ethanol. This study was conducted to produce bioethanol utilizing the SHF (separate hydrolysis and fermentation) technique from corn stove lignocellulose. Pretreatment with sodium hydroxide at various concentrations was also studied. The influence of enzymatic saccharification, fermentation time, and substrate concentration on sugar yield and, eventually, ethanol production was investigated. Fermentation was carried out by using the enzymatically saccharified hydrolysate and monoculture of Saccharomyces cerevisiae. The results reveal that pretreatment with 2% NaOH followed by 48 hours of hydrolysis produced the maximum bioethanol production (30.21 ±0.13 g/L). This study findings indicated that alkali-pretreated corn stove might be used as a feedstock for bioethanol production, reducing reliance on fossil fuels.