拟格的形式化

IF 1 Q1 MATHEMATICS
Dominik Kulesza, Adam Grabowski
{"title":"拟格的形式化","authors":"Dominik Kulesza, Adam Grabowski","doi":"10.2478/forma-2020-0019","DOIUrl":null,"url":null,"abstract":"Summary The main aim of this article is to introduce formally one of the generalizations of lattices, namely quasilattices, which can be obtained from the axiomatization of the former class by certain weakening of ordinary absorption laws. We show propositions QLT-1 to QLT-7 from [15], presenting also some short variants of corresponding axiom systems. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formalization of Quasilattices\",\"authors\":\"Dominik Kulesza, Adam Grabowski\",\"doi\":\"10.2478/forma-2020-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The main aim of this article is to introduce formally one of the generalizations of lattices, namely quasilattices, which can be obtained from the axiomatization of the former class by certain weakening of ordinary absorption laws. We show propositions QLT-1 to QLT-7 from [15], presenting also some short variants of corresponding axiom systems. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2020-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是正式地介绍格的一种推广,即准格,它可以通过一定削弱普通吸收定律而由前一类的公理化得到。我们从[15]给出命题qrt -1到qrt -7,并给出了相应公理系统的一些简短变体。在Prover9防bb0辅助工具的帮助下,部分结果在Mizar[1]、[2]体系中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formalization of Quasilattices
Summary The main aim of this article is to introduce formally one of the generalizations of lattices, namely quasilattices, which can be obtained from the axiomatization of the former class by certain weakening of ordinary absorption laws. We show propositions QLT-1 to QLT-7 from [15], presenting also some short variants of corresponding axiom systems. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信