D. Nelson, M. Berninger, P. Flores, Douglas E. Good, D. Henderson, K. Hogge, S. Huber, S. Lutz, S. E. Mitchell, R. Howe, C. V. Mitton, I. Molina, D. R. Bozman, S. Cordova, D. R. Mitchell, E. Ormond
{"title":"x射线针孔相机测量","authors":"D. Nelson, M. Berninger, P. Flores, Douglas E. Good, D. Henderson, K. Hogge, S. Huber, S. Lutz, S. E. Mitchell, R. Howe, C. V. Mitton, I. Molina, D. R. Bozman, S. Cordova, D. R. Mitchell, E. Ormond","doi":"10.1109/PPC.2013.6627633","DOIUrl":null,"url":null,"abstract":"The development of the rod pinch diode has lead to high resolution radiography used on contained explosive experiments. The rod pinch diodes use a small diameter anode rod, which extends through a cathode aperture. Electrons borne off the aperture edge can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source. This source is utilized as the primary diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality. We have observed that an additional pinch occurs at the interface near the anode rod and the rod holder. This suggests that there are stray electrons emitted from the surfaces of the surrounding area. In this paper we present results of x-ray measurements using a pinhole camera. The camera geometry used is an upstream view 30° with respect to the diode centerline. This diagnostic will be employed to: (1) diagnose x-ray reproducibility and quality, and (2) investigate the effect of different diode configurations.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"50 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-ray pinhole camera measurements\",\"authors\":\"D. Nelson, M. Berninger, P. Flores, Douglas E. Good, D. Henderson, K. Hogge, S. Huber, S. Lutz, S. E. Mitchell, R. Howe, C. V. Mitton, I. Molina, D. R. Bozman, S. Cordova, D. R. Mitchell, E. Ormond\",\"doi\":\"10.1109/PPC.2013.6627633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the rod pinch diode has lead to high resolution radiography used on contained explosive experiments. The rod pinch diodes use a small diameter anode rod, which extends through a cathode aperture. Electrons borne off the aperture edge can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source. This source is utilized as the primary diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality. We have observed that an additional pinch occurs at the interface near the anode rod and the rod holder. This suggests that there are stray electrons emitted from the surfaces of the surrounding area. In this paper we present results of x-ray measurements using a pinhole camera. The camera geometry used is an upstream view 30° with respect to the diode centerline. This diagnostic will be employed to: (1) diagnose x-ray reproducibility and quality, and (2) investigate the effect of different diode configurations.\",\"PeriodicalId\":6313,\"journal\":{\"name\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"50 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2013.6627633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2013.6627633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The development of the rod pinch diode has lead to high resolution radiography used on contained explosive experiments. The rod pinch diodes use a small diameter anode rod, which extends through a cathode aperture. Electrons borne off the aperture edge can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source. This source is utilized as the primary diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality. We have observed that an additional pinch occurs at the interface near the anode rod and the rod holder. This suggests that there are stray electrons emitted from the surfaces of the surrounding area. In this paper we present results of x-ray measurements using a pinhole camera. The camera geometry used is an upstream view 30° with respect to the diode centerline. This diagnostic will be employed to: (1) diagnose x-ray reproducibility and quality, and (2) investigate the effect of different diode configurations.