{"title":"基于渐进式I型区间截尾数据的竞争风险下对数-位置-尺度分布族的推断","authors":"Soumya Roy, B. Pradhan","doi":"10.1111/stan.12282","DOIUrl":null,"url":null,"abstract":"In this article, we present statistical inference of unknown lifetime parameters based on a progressive Type‐I interval censored dataset in presence of independent competing risks. A progressive Type‐I interval censoring scheme is a generalization of an interval censoring scheme, allowing intermediate withdrawals of test units at the inspection points. We assume that the lifetime distribution corresponding to a failure mode belongs to a log‐location‐scale family of distributions. Subsequently, we present the maximum likelihood analysis for unknown model parameters. We observe that the numerical computation of the maximum likelihood estimates can be significantly eased by developing an expectation‐maximization algorithm. We demonstrate the same for three popular choices of the log‐location‐scale family of distributions. We then provide Bayesian inference of the unknown lifetime parameters via Gibbs Sampling and a related data augmentation scheme. We compare the performance of the maximum likelihood estimators and Bayesian estimators using a detailed simulation study. We also illustrate the developed methods using a progressive Type‐I interval censored dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data\",\"authors\":\"Soumya Roy, B. Pradhan\",\"doi\":\"10.1111/stan.12282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present statistical inference of unknown lifetime parameters based on a progressive Type‐I interval censored dataset in presence of independent competing risks. A progressive Type‐I interval censoring scheme is a generalization of an interval censoring scheme, allowing intermediate withdrawals of test units at the inspection points. We assume that the lifetime distribution corresponding to a failure mode belongs to a log‐location‐scale family of distributions. Subsequently, we present the maximum likelihood analysis for unknown model parameters. We observe that the numerical computation of the maximum likelihood estimates can be significantly eased by developing an expectation‐maximization algorithm. We demonstrate the same for three popular choices of the log‐location‐scale family of distributions. We then provide Bayesian inference of the unknown lifetime parameters via Gibbs Sampling and a related data augmentation scheme. We compare the performance of the maximum likelihood estimators and Bayesian estimators using a detailed simulation study. We also illustrate the developed methods using a progressive Type‐I interval censored dataset.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data
In this article, we present statistical inference of unknown lifetime parameters based on a progressive Type‐I interval censored dataset in presence of independent competing risks. A progressive Type‐I interval censoring scheme is a generalization of an interval censoring scheme, allowing intermediate withdrawals of test units at the inspection points. We assume that the lifetime distribution corresponding to a failure mode belongs to a log‐location‐scale family of distributions. Subsequently, we present the maximum likelihood analysis for unknown model parameters. We observe that the numerical computation of the maximum likelihood estimates can be significantly eased by developing an expectation‐maximization algorithm. We demonstrate the same for three popular choices of the log‐location‐scale family of distributions. We then provide Bayesian inference of the unknown lifetime parameters via Gibbs Sampling and a related data augmentation scheme. We compare the performance of the maximum likelihood estimators and Bayesian estimators using a detailed simulation study. We also illustrate the developed methods using a progressive Type‐I interval censored dataset.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.