纳米光子芯片上量子点单光子源的量子频率转换。

Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan
{"title":"纳米光子芯片上量子点单光子源的量子频率转换。","authors":"Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan","doi":"10.1364/optica.6.000563","DOIUrl":null,"url":null,"abstract":"<p><p>Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies. Here, we report the first demonstration of quantum frequency conversion of a quantum dot single-photon source on a silicon nanophotonic chip. Single photons from a quantum dot in a micropillar cavity are shifted in wavelength with an on-chip conversion efficiency ≈ 12 %, limited by the linewidth of the quantum dot photons. The intensity autocorrelation function <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></math> for the frequency-converted light is antibunched with <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0.290</mn><mo>±</mo><mn>0.030</mn></mrow></math>, compared to the before-conversion value <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0.080</mn><mo>±</mo><mn>0.003</mn></mrow></math>. We demonstrate the suitability of our frequency conversion interface as a resource for quantum dot sources by characterizing its effectiveness across a wide span of input wavelengths (840 nm to 980 nm), and its ability to achieve tunable wavelength shifts difficult to obtain by other approaches.</p>","PeriodicalId":6498,"journal":{"name":"2018 Conference on Lasers and Electro-Optics (CLEO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip.\",\"authors\":\"Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan\",\"doi\":\"10.1364/optica.6.000563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies. Here, we report the first demonstration of quantum frequency conversion of a quantum dot single-photon source on a silicon nanophotonic chip. Single photons from a quantum dot in a micropillar cavity are shifted in wavelength with an on-chip conversion efficiency ≈ 12 %, limited by the linewidth of the quantum dot photons. The intensity autocorrelation function <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></math> for the frequency-converted light is antibunched with <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0.290</mn><mo>±</mo><mn>0.030</mn></mrow></math>, compared to the before-conversion value <math><mrow><msup><mi>g</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0.080</mn><mo>±</mo><mn>0.003</mn></mrow></math>. We demonstrate the suitability of our frequency conversion interface as a resource for quantum dot sources by characterizing its effectiveness across a wide span of input wavelengths (840 nm to 980 nm), and its ability to achieve tunable wavelength shifts difficult to obtain by other approaches.</p>\",\"PeriodicalId\":6498,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.6.000563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optica.6.000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单个自组装砷化镓/砷化镓量子点是量子信息科学领域前景光明的无差别光子源。然而,由于量子点生长过程中固有的不均匀展宽,它们的发射波长分布限制了创建多个相同光源的能力。量子频率转换可以克服这一问题,尤其是在使用可扩展的芯片集成技术的情况下。在此,我们首次在硅纳米光子芯片上演示了量子点单光子源的量子频率转换。来自微柱状腔体中量子点的单光子进行了波长位移,片上转换效率≈ 12%,但受量子点光子线宽的限制。频率转换后光的强度自相关函数 g(2)(τ) 为反束,g(2)(0)=0.290±0.030,而转换前的值为 g(2)(0)=0.080±0.003。我们证明了我们的频率转换接口作为量子点源资源的适用性,它在宽输入波长范围(840 纳米到 980 纳米)内的有效性,以及它实现其他方法难以获得的可调波长偏移的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip.

Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies. Here, we report the first demonstration of quantum frequency conversion of a quantum dot single-photon source on a silicon nanophotonic chip. Single photons from a quantum dot in a micropillar cavity are shifted in wavelength with an on-chip conversion efficiency ≈ 12 %, limited by the linewidth of the quantum dot photons. The intensity autocorrelation function g(2)(τ) for the frequency-converted light is antibunched with g(2)(0)=0.290±0.030, compared to the before-conversion value g(2)(0)=0.080±0.003. We demonstrate the suitability of our frequency conversion interface as a resource for quantum dot sources by characterizing its effectiveness across a wide span of input wavelengths (840 nm to 980 nm), and its ability to achieve tunable wavelength shifts difficult to obtain by other approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信