鲁棒快速子类判别分析

K. Chumachenko, Alexandros Iosifidis, M. Gabbouj
{"title":"鲁棒快速子类判别分析","authors":"K. Chumachenko, Alexandros Iosifidis, M. Gabbouj","doi":"10.23919/Eusipco47968.2020.9287557","DOIUrl":null,"url":null,"abstract":"In this paper, we propose novel methods to address the challenges of dimensionality reduction related to potential outlier classes and imbalanced classes often present in data. In particular, we propose extensions to Fast Subclass Discriminant Analysis and Subclass Discriminant Analysis that allow to put more attention on uder-represented classes or classes that are likely to be confused with each other. Furthermore, the kernelized variants of the proposed algorithms are presented. The proposed methods lead to faster training time and improved accuracy as shown by experiments on eight datasets of different domains, tasks, and sizes.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"51 1","pages":"1397-1401"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Fast Subclass Discriminant Analysis\",\"authors\":\"K. Chumachenko, Alexandros Iosifidis, M. Gabbouj\",\"doi\":\"10.23919/Eusipco47968.2020.9287557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose novel methods to address the challenges of dimensionality reduction related to potential outlier classes and imbalanced classes often present in data. In particular, we propose extensions to Fast Subclass Discriminant Analysis and Subclass Discriminant Analysis that allow to put more attention on uder-represented classes or classes that are likely to be confused with each other. Furthermore, the kernelized variants of the proposed algorithms are presented. The proposed methods lead to faster training time and improved accuracy as shown by experiments on eight datasets of different domains, tasks, and sizes.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"51 1\",\"pages\":\"1397-1401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了新的方法来解决与数据中经常存在的潜在异常类和不平衡类相关的降维挑战。特别地,我们提出了对快速子类判别分析和子类判别分析的扩展,允许更多地关注代表性不足的类或可能相互混淆的类。此外,还提出了该算法的核化变体。在不同领域、任务和大小的8个数据集上进行的实验表明,本文提出的方法可以加快训练时间,提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Fast Subclass Discriminant Analysis
In this paper, we propose novel methods to address the challenges of dimensionality reduction related to potential outlier classes and imbalanced classes often present in data. In particular, we propose extensions to Fast Subclass Discriminant Analysis and Subclass Discriminant Analysis that allow to put more attention on uder-represented classes or classes that are likely to be confused with each other. Furthermore, the kernelized variants of the proposed algorithms are presented. The proposed methods lead to faster training time and improved accuracy as shown by experiments on eight datasets of different domains, tasks, and sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信