QRS检测采用模糊神经网络

K. P. Cohen, W. Tompkins, A. Djohan, J. Webster, Y.H. Hu
{"title":"QRS检测采用模糊神经网络","authors":"K. P. Cohen, W. Tompkins, A. Djohan, J. Webster, Y.H. Hu","doi":"10.1109/IEMBS.1995.575064","DOIUrl":null,"url":null,"abstract":"We developed a QRS detection algorithm which uses a fuzzy neural network (FNN) to process lead II recordings of the ECG. We trained and tested our algorithm using the MIT/BIH arrhythmia database, and compared our results to existing algorithms. For tapes 100, 105 and 108, our FNN reduced the total number of combined false-positive and false-negative detections from 174 to 44.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"57 1","pages":"189-190 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"QRS detection using a fuzzy neural network\",\"authors\":\"K. P. Cohen, W. Tompkins, A. Djohan, J. Webster, Y.H. Hu\",\"doi\":\"10.1109/IEMBS.1995.575064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a QRS detection algorithm which uses a fuzzy neural network (FNN) to process lead II recordings of the ECG. We trained and tested our algorithm using the MIT/BIH arrhythmia database, and compared our results to existing algorithms. For tapes 100, 105 and 108, our FNN reduced the total number of combined false-positive and false-negative detections from 174 to 44.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"57 1\",\"pages\":\"189-190 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.575064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.575064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们开发了一种QRS检测算法,该算法使用模糊神经网络(FNN)处理心电导联II记录。我们使用MIT/BIH心律失常数据库训练和测试我们的算法,并将我们的结果与现有算法进行比较。对于磁带100、105和108,我们的FNN将假阳性和假阴性检测的总数从174个减少到44个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QRS detection using a fuzzy neural network
We developed a QRS detection algorithm which uses a fuzzy neural network (FNN) to process lead II recordings of the ECG. We trained and tested our algorithm using the MIT/BIH arrhythmia database, and compared our results to existing algorithms. For tapes 100, 105 and 108, our FNN reduced the total number of combined false-positive and false-negative detections from 174 to 44.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信