Yong-xing Jiao, Jian-sheng Liu, Xing-wang Duan, Xiao-hua Zheng, Wen-wu He
{"title":"动态再结晶法预测06Cr19Ni9NbN钢临界锻件渗透效率","authors":"Yong-xing Jiao, Jian-sheng Liu, Xing-wang Duan, Xiao-hua Zheng, Wen-wu He","doi":"10.1016/S1006-706X(17)30097-3","DOIUrl":null,"url":null,"abstract":"<div><p>In order to determine the critical forging penetration efficiency (FPE) of 06Cr19Ni9NbN steel, a new model was presented to describe critical FPE, which is significant to optimize the steel forging process. The plane strain compression tests were conducted to obtain the model and confirm its validity. The results indicated that the dynamic recrystallization (DRX) volume fraction increases and the grain size decreases with the rise of reduction ratio. Meanwhile, the compression process was simulated by DEFORM software. The tensile tests were conducted and the results demonstrated that the mechanical properties gradually become stable when the reduction ratio increases to 30%, 34% and 40% at 1200, 1100 and 1000°C, respectively. The calculated results based on this new model are consistent with experimental results, indicating that the model is suitable to predict the critical FPE for the steel.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 6","pages":"Pages 649-653"},"PeriodicalIF":3.1000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30097-3","citationCount":"4","resultStr":"{\"title\":\"Prediction of critical forging penetration efficiency for 06Cr19Ni9NbN steel by dynamic recrystallization\",\"authors\":\"Yong-xing Jiao, Jian-sheng Liu, Xing-wang Duan, Xiao-hua Zheng, Wen-wu He\",\"doi\":\"10.1016/S1006-706X(17)30097-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to determine the critical forging penetration efficiency (FPE) of 06Cr19Ni9NbN steel, a new model was presented to describe critical FPE, which is significant to optimize the steel forging process. The plane strain compression tests were conducted to obtain the model and confirm its validity. The results indicated that the dynamic recrystallization (DRX) volume fraction increases and the grain size decreases with the rise of reduction ratio. Meanwhile, the compression process was simulated by DEFORM software. The tensile tests were conducted and the results demonstrated that the mechanical properties gradually become stable when the reduction ratio increases to 30%, 34% and 40% at 1200, 1100 and 1000°C, respectively. The calculated results based on this new model are consistent with experimental results, indicating that the model is suitable to predict the critical FPE for the steel.</p></div>\",\"PeriodicalId\":64470,\"journal\":{\"name\":\"Journal of Iron and Steel Research(International)\",\"volume\":\"24 6\",\"pages\":\"Pages 649-653\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30097-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research(International)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006706X17300973\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17300973","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Prediction of critical forging penetration efficiency for 06Cr19Ni9NbN steel by dynamic recrystallization
In order to determine the critical forging penetration efficiency (FPE) of 06Cr19Ni9NbN steel, a new model was presented to describe critical FPE, which is significant to optimize the steel forging process. The plane strain compression tests were conducted to obtain the model and confirm its validity. The results indicated that the dynamic recrystallization (DRX) volume fraction increases and the grain size decreases with the rise of reduction ratio. Meanwhile, the compression process was simulated by DEFORM software. The tensile tests were conducted and the results demonstrated that the mechanical properties gradually become stable when the reduction ratio increases to 30%, 34% and 40% at 1200, 1100 and 1000°C, respectively. The calculated results based on this new model are consistent with experimental results, indicating that the model is suitable to predict the critical FPE for the steel.