{"title":"处理退相干:并行化量子傅里叶变换","authors":"Marius Nagy, S. Akl","doi":"10.1142/S012962641000017X","DOIUrl":null,"url":null,"abstract":"Rank-varying computational complexity describes those computations in which the complexity of executing each step is not a constant, but evolves throughout the computation as a function of the order of execution of each step [2]. This paper identifies practical instances of this computational paradigm in the procedures for computing the quantum Fourier transform and its inverse. It is shown herein that under the constraints imposed by quantum decoherence, only a parallel approach can guarantee a reliable solution or, alternatively, improve scalability.","PeriodicalId":44742,"journal":{"name":"Parallel Processing Letters","volume":"39 1","pages":"108-113"},"PeriodicalIF":0.5000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Coping with Decoherence: Parallelizing the Quantum Fourier Transform\",\"authors\":\"Marius Nagy, S. Akl\",\"doi\":\"10.1142/S012962641000017X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rank-varying computational complexity describes those computations in which the complexity of executing each step is not a constant, but evolves throughout the computation as a function of the order of execution of each step [2]. This paper identifies practical instances of this computational paradigm in the procedures for computing the quantum Fourier transform and its inverse. It is shown herein that under the constraints imposed by quantum decoherence, only a parallel approach can guarantee a reliable solution or, alternatively, improve scalability.\",\"PeriodicalId\":44742,\"journal\":{\"name\":\"Parallel Processing Letters\",\"volume\":\"39 1\",\"pages\":\"108-113\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Processing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S012962641000017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Processing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012962641000017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Coping with Decoherence: Parallelizing the Quantum Fourier Transform
Rank-varying computational complexity describes those computations in which the complexity of executing each step is not a constant, but evolves throughout the computation as a function of the order of execution of each step [2]. This paper identifies practical instances of this computational paradigm in the procedures for computing the quantum Fourier transform and its inverse. It is shown herein that under the constraints imposed by quantum decoherence, only a parallel approach can guarantee a reliable solution or, alternatively, improve scalability.
期刊介绍:
Parallel Processing Letters (PPL) aims to rapidly disseminate results on a worldwide basis in the field of parallel processing in the form of short papers. It fills the need for an information vehicle which can convey recent achievements and further the exchange of scientific information in the field. This journal has a wide scope and topics covered included: - design and analysis of parallel and distributed algorithms - theory of parallel computation - parallel programming languages - parallel programming environments - parallel architectures and VLSI circuits