基于无线电环境图的小小区无线电资源管理

D. Denkovski, V. Rakovic, Marko Angjelicinoski, V. Atanasovski, L. Gavrilovska
{"title":"基于无线电环境图的小小区无线电资源管理","authors":"D. Denkovski, V. Rakovic, Marko Angjelicinoski, V. Atanasovski, L. Gavrilovska","doi":"10.1109/INFCOMW.2014.6849202","DOIUrl":null,"url":null,"abstract":"Recent advances in cognitive radio have identified the small-cells among the most promising future wireless networking scenarios. Utilizing radio context information, small-cells should perform the most optimal radio resource management (RRM) to maximize performances and minimize inter-cell interference. Radio Environmental Maps (REM) data: empirical propagation models, active transmitters' locations, up-to-date interference levels, statistical channels occupancies, are especially beneficial in these scenarios. The proposed demonstration aims to showcase the benefits of using REM information in the small-cell optimization. The demonstration utilizes a modular/flexible REM prototype, performing a realtime REM data acquisition, processing and inference as input to an enhanced small-cell optimization.","PeriodicalId":6468,"journal":{"name":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"53 1","pages":"155-156"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Small-cells radio resource management based on Radio Environmental Maps\",\"authors\":\"D. Denkovski, V. Rakovic, Marko Angjelicinoski, V. Atanasovski, L. Gavrilovska\",\"doi\":\"10.1109/INFCOMW.2014.6849202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in cognitive radio have identified the small-cells among the most promising future wireless networking scenarios. Utilizing radio context information, small-cells should perform the most optimal radio resource management (RRM) to maximize performances and minimize inter-cell interference. Radio Environmental Maps (REM) data: empirical propagation models, active transmitters' locations, up-to-date interference levels, statistical channels occupancies, are especially beneficial in these scenarios. The proposed demonstration aims to showcase the benefits of using REM information in the small-cell optimization. The demonstration utilizes a modular/flexible REM prototype, performing a realtime REM data acquisition, processing and inference as input to an enhanced small-cell optimization.\",\"PeriodicalId\":6468,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"53 1\",\"pages\":\"155-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2014.6849202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2014.6849202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

认知无线电的最新进展已经确定了小蜂窝是未来最有希望的无线网络场景之一。利用无线电上下文信息,小蜂窝应该执行最优的无线电资源管理(RRM),以最大化性能并最小化小区间干扰。无线电环境图(REM)数据:经验传播模型、主动发射机位置、最新干扰水平、统计信道占用,在这些情况下特别有益。提出的演示旨在展示在小单元优化中使用REM信息的好处。该演示利用模块化/灵活的REM原型,执行实时REM数据采集、处理和推理,作为增强的小单元优化的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small-cells radio resource management based on Radio Environmental Maps
Recent advances in cognitive radio have identified the small-cells among the most promising future wireless networking scenarios. Utilizing radio context information, small-cells should perform the most optimal radio resource management (RRM) to maximize performances and minimize inter-cell interference. Radio Environmental Maps (REM) data: empirical propagation models, active transmitters' locations, up-to-date interference levels, statistical channels occupancies, are especially beneficial in these scenarios. The proposed demonstration aims to showcase the benefits of using REM information in the small-cell optimization. The demonstration utilizes a modular/flexible REM prototype, performing a realtime REM data acquisition, processing and inference as input to an enhanced small-cell optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信