{"title":"社交网络中地理相关趋势检测的图形摘要","authors":"Colin Biafore, Faisal Nawab","doi":"10.1145/2882903.2914832","DOIUrl":null,"url":null,"abstract":"Trends detection in social networks is possible via a multitude of models with different characteristics. These models are pre-defined and rigid which creates the need to expose the social network graph to data scientists to introduce the human-element in trends detection. However, inspecting large social network graphs visually is tiresome. We tackle this problem by providing effective graph summarizations aimed at the application of geo-correlated trends detection in social networks.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Summarization for Geo-correlated Trends Detection in Social Networks\",\"authors\":\"Colin Biafore, Faisal Nawab\",\"doi\":\"10.1145/2882903.2914832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trends detection in social networks is possible via a multitude of models with different characteristics. These models are pre-defined and rigid which creates the need to expose the social network graph to data scientists to introduce the human-element in trends detection. However, inspecting large social network graphs visually is tiresome. We tackle this problem by providing effective graph summarizations aimed at the application of geo-correlated trends detection in social networks.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2914832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Summarization for Geo-correlated Trends Detection in Social Networks
Trends detection in social networks is possible via a multitude of models with different characteristics. These models are pre-defined and rigid which creates the need to expose the social network graph to data scientists to introduce the human-element in trends detection. However, inspecting large social network graphs visually is tiresome. We tackle this problem by providing effective graph summarizations aimed at the application of geo-correlated trends detection in social networks.