Carles Fuertes-Espinosa, Cristina García-Simón, Míriam Pujals, M. Garcia‐Borràs, L. Gomez, T. Parella, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas
{"title":"超分子富勒烯海绵作为c60区域选择性功能化的催化掩膜","authors":"Carles Fuertes-Espinosa, Cristina García-Simón, Míriam Pujals, M. Garcia‐Borràs, L. Gomez, T. Parella, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas","doi":"10.2139/ssrn.3430708","DOIUrl":null,"url":null,"abstract":"Summary Isomer-pure poly-functionalized fullerenes are required to boost the development of fullerene chemistry in all fields. On a general basis, multi-adduct mixtures with uncontrolled regioselectivity are obtained, and the use of chromatographic purification is prohibitively costly and time consuming, especially in the production of solar cells. Single-isomer poly-functionalized fullerenes are only accessible via stoichiometric, multistep paths entailing protecting-unprotecting sequences. Herein, a nanocapsule is used as a supramolecular tetragonal prismatic mask to exert full control on the reactivity and the equatorial regioselectivity of Bingel-Hirsch cyclopropanation reactions of a confined C60 guest. Thus, equatorial bis-, tris-, and tetrakis-C60 homo-adducts are exclusively obtained in a stepwise manner. Furthermore, isomer-pure equatorial hetero-tetrakis-adducts or hetero-Th-hexakis-adducts are synthesized at will in one-pot synthesis for the first time. This work provides a synthetically valuable path to produce a plethora of new pure-isomer poly-functionalized C60-based compounds as candidates for testing in solar cell devices and biomedical applications. Video Abstract Download : Download video (34MB)","PeriodicalId":89488,"journal":{"name":"The electronic journal of human sexuality","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Supramolecular Fullerene Sponges As Catalytic Masks for Regioselective Functionalization of C 60\",\"authors\":\"Carles Fuertes-Espinosa, Cristina García-Simón, Míriam Pujals, M. Garcia‐Borràs, L. Gomez, T. Parella, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas\",\"doi\":\"10.2139/ssrn.3430708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Isomer-pure poly-functionalized fullerenes are required to boost the development of fullerene chemistry in all fields. On a general basis, multi-adduct mixtures with uncontrolled regioselectivity are obtained, and the use of chromatographic purification is prohibitively costly and time consuming, especially in the production of solar cells. Single-isomer poly-functionalized fullerenes are only accessible via stoichiometric, multistep paths entailing protecting-unprotecting sequences. Herein, a nanocapsule is used as a supramolecular tetragonal prismatic mask to exert full control on the reactivity and the equatorial regioselectivity of Bingel-Hirsch cyclopropanation reactions of a confined C60 guest. Thus, equatorial bis-, tris-, and tetrakis-C60 homo-adducts are exclusively obtained in a stepwise manner. Furthermore, isomer-pure equatorial hetero-tetrakis-adducts or hetero-Th-hexakis-adducts are synthesized at will in one-pot synthesis for the first time. This work provides a synthetically valuable path to produce a plethora of new pure-isomer poly-functionalized C60-based compounds as candidates for testing in solar cell devices and biomedical applications. Video Abstract Download : Download video (34MB)\",\"PeriodicalId\":89488,\"journal\":{\"name\":\"The electronic journal of human sexuality\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The electronic journal of human sexuality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3430708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The electronic journal of human sexuality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3430708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supramolecular Fullerene Sponges As Catalytic Masks for Regioselective Functionalization of C 60
Summary Isomer-pure poly-functionalized fullerenes are required to boost the development of fullerene chemistry in all fields. On a general basis, multi-adduct mixtures with uncontrolled regioselectivity are obtained, and the use of chromatographic purification is prohibitively costly and time consuming, especially in the production of solar cells. Single-isomer poly-functionalized fullerenes are only accessible via stoichiometric, multistep paths entailing protecting-unprotecting sequences. Herein, a nanocapsule is used as a supramolecular tetragonal prismatic mask to exert full control on the reactivity and the equatorial regioselectivity of Bingel-Hirsch cyclopropanation reactions of a confined C60 guest. Thus, equatorial bis-, tris-, and tetrakis-C60 homo-adducts are exclusively obtained in a stepwise manner. Furthermore, isomer-pure equatorial hetero-tetrakis-adducts or hetero-Th-hexakis-adducts are synthesized at will in one-pot synthesis for the first time. This work provides a synthetically valuable path to produce a plethora of new pure-isomer poly-functionalized C60-based compounds as candidates for testing in solar cell devices and biomedical applications. Video Abstract Download : Download video (34MB)